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ON STOCHASTIC MODELLING
OF WATER CONSUMPTION
AND WASTEWATER DISCHARGE

Stochastic modelling of water consumption, wastewater discharge and water and wastewater
quality is of great importance in sanitary engineering. It is connected with control of the water and
wastewater treatment. This paper gives stochastic models of hourly tap water consumption and
wastewater inflow to a municipal sewage treatment plant through a separate sewer system.
First-order autoregressive seasonal models (with period S = 24 h) give a good approximation of
hourly water consumption. The application of such models for the sewage inflow to the treatment
plant yields worse approximating effects because of irregular disturbance due to the rainfall.
Taking this disturbance into account enables us to obtain a model which improves the
approximation. The same holds when wastewater inflow is correlated with water consumption.

1. INTRODUCTION

The wide spectrum of problems dealt with in water and wastewater management
includes among others modelling of flow and quality parameters. Models of that
kind may have a number of various applications. They are employed to predict water
consumption [1] or to describe variations of water flow and water quality in streams
and rivers [2], [3]. Such models may be efficient tools enabling interpretation of
operating data from wastewater treatment plants [4]-[7], analysis of their dynamics
[7], [8], and description of the water treatment process for the needs of control [9].

In this paper, stochastic models of tap water consumption and wastewater inflow
to a municipal sewage treatment plant have been presented. Analyses of data
included hourly water consumption in two different housing estates (one of these is
situated in a large city [10], the other one in a small town [11]) and hourly
wastewater flow entering the sewage treatment plant of the same town through a
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separate sewer system [12]. The separate sewer system receives illicitly precipitation
water from many inlets. The models enable to obtain forecasts, which can be used in
water supply and wastewater treatment processes control.

2. TIME SERIES ANALYSIS AND SOME FUNDAMENTAL NOTIONS

The methods used in this study are those developed by Box and JENKINS [13].
In engineering practice, we often have to deal with series of interrelated
observations (time series), which are realizations of a given stochastic process. The
objective of time series analysis is to discover and to quantify the relations that occur
among the elements of the series. This enables construction of stochastic models.
Typical examples of time series (which are of great importance in sanitary
engineering) are hourly water consumption, wastewater flow, and wastewater load.
The model for a stationary stochastic process acquires the form '

Z_z=<P1Z_t—l+§Dzzt—2+---+¢pzz—p+a:- (1)

It is referred to as autoregressive model (AR) of order p, and may be defined as
AR (p). Thus, AR (1) denotes a first-order model, and henceforth

Zi=¢Zi1+a,. )
The term Z, included in formulae (1) and (2) indicates the deviation of the point value
from the average of the stochastic process p and may be written as Z.=Z,—u,
whereas a, denotes white noise (i.e., a series of independent random impulses with an
average value zero, and a constant variance ¢;). Substitution of the backward shift
operator BZ, = Z,_, (viz. B"Z, = Z,_,) into model (1) gives

¢(B)Z, = a,. ©)
Model
Z,=(1-6,B—6,B*—...0,B%a, (4)
which may also be formulated as
Z,=0(B)a, 5

is referred to as a moving average model of order g, MA(qg).

It is advisable to use models as simple as possible, i.e., those including the least
possible number of parameters. These may sometimes be achieved by using a
combined autoregressive-moving average model of order p, g (viz. ARMA (p, q)):

¢ (B)Z, = @(B)a,. (6)

It may frequently happen that the processes under analysis fail to be stationary. If
so0, we are sometimes able to make them stationary by differentiation in terms of the




Stochastic modelling of water consumption and wastewater discharge 43

backward difference operator V or seasonal backward difference operator V. Thus,
we can write

VZ,=Z,~Z,_,=(1-B)Z, =W, (7)
V.Z,=Z,~Z,_ ,=(1—B)Z, =W, @®)

Whenever necessary, we have to repeat the differentiation procedure d times.

Models of ARMA type may be fitted to the W, series. They are then referred to as
integrated autoregression-moving average processes, ARIMA (p, d, q), and can be
expressed as

e(B)W, =@ (B)ViZ, = ¢*Z, = O (B)a, ©)

Having two correlated time series at hand (X, and Y)), it is possible to model one
of these by making use of the information included in the other. This way, we have
obtained the transfer function model with added noise

5(B)Y, = w(B)X,_,+N, (10)

where X, denotes input and Y, indicates output.
Selecting the process ARIMA (p, d, q) for the purpose of modelling noise N, we
can write

Y, =67 (Bw(B)X,—,+¢* ' (B)O(B)a,. (11)

Making use of the model (11), it is necessary to choose a delay b in addition to the
coefficients in operators J, w, ¢, @, and noise variance 62. The choice of an
appropriate model to describe a given time series is an iterative procedure which
involves identification, estimation of parameters, and diagnostic checks.

Autocorrelation function and partial autocorrelation function are two useful
tools for the identification of ARIMA models. Using the autocorrelation function, we
can define the differentiation of the time series, which is a prerequisite to obtain a
stationary process. The autocorrelation function of a stationary process as well as
the partial autocorrelation function enable the orders of the autoregression operators
and of the moving average to be determined tentatively. The autocorrelation
function allows a rough evaluation of the coefficients of the model. More accurate
calculations are carried out during nonlinear estimation of parameters. Noise q, is
assumed to be white and to display a normal distribution. The optimization criterion
adopted at the stage of nonlinear estimation comprises a minimum error mean-
square for the residuals of the model (difference between model and data).

Once its parameters have been estimated, the model is subject to diagnostic
checking for determining its adequacy. If the model is found to be inadequate, the
iteration cycle must be repeated either in full or in part.

There are two basic factors which decide whether or not the model is adequate —
the degree of deviation from the adopted independence of residuals and the degree of
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deviation from normal distribution. To assess the independence of residuals it is
convenient to use their autocorrelation function which may be evaluated by checking
the goodness of fit by test Q. Another convenient tool is the cumulative periodogram.

The identification of the transfer function model involves the cross-correlation
function of series X, and Y,. The analysis of the function enables rough evaluation of
the orders of operator §, operator w (r and s, respectively), and delay b. The
coefficients of the model should be estimated by the same method as those of the
ARIMA model. The same holds for the method of determining the adequacy of the
model. There is, however, one more thing to do — to check the independence of the
residuals and the input. The most convenient tool to investigate this independence is
the cross-correlation function of residuals and input, which may be evaluated when
checking the goodness of fit by test S. More details on it and forecasting procedures
can be found in Box and JEnkIns [13].

3. DISCUSSION OF RESULTS

3.1. WATER CONSUMPTION

Figure 1 (solid line) gives hourly water consumption Z, for the housing estate of
Wroclaw (Series A). Raw data were logged prior to further processing (X, =InZ,).
The autocorrelation function of Series A is shown in fig. 2. The apparent 24-hour
seasonal component substantiates the necessity of using the seasonal differentiating
operator V,, to make the series stationary. Figures 3 and 4 illustrate the
autocorrelation function and the partial autocorrelation function for the dif-
ferentiated series (V,, X,), respectively. The rapid fade-away of the autocorrelation
function substantiates the stationary nature of the series. The break of the partial
autocorrelation function at k > 1 suggests an autoregression model of first order
(AR(1)). The results of fitting are listed in tab. 1. Figures 5 and 6 give the
autocorrelation function of noise and the cumulative periodogram of model
residuals, respectively. Analysing the plots of the figures and taking into account the
data of tab. 1, we have good evidence that the selected model is adequate. Test x>
gives good support to the normal distribution of the residuals (a = 0.006,
SD = 0.157, y* =119, Df. = 9)*.

Figure 1 gives a comparison of data and one-step-ahead forecasts calculated by
making use of the model. The agreement is very good. Taking into account the
presence of the operator Vg, all forecasts which are more than one step ahead will
be adjusted to the seasonal nature of the time series.

The results from the study of hourly water consumption for the housing estate of
town R (Series B) are plotted in figs. 7-12. The model to be fitted was found to be

* g — mean, SD — standard deviation, D.f. — degree of freedom.
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Fig. 1. Hourly water consumption and forecast for the housing estate of a large city (Series A, Z,)

that for Series A. The results of fitting are listed in tab. 2. The data of tab. 2 as well as
the plots in figs. 10-12 indicate that the model is adequate. There is a good
agreement between one-step-ahead forecasts and the data involved.
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Fig. 4. Partial autocorrelation function for dif-  Fig. 5. Autocorrelation function for residuals of
ferentiated Series A (V,, X)) model (1—¢,B)V,, X, =q, (Series A)

Table 1
Fitting of model (1—¢, B)V,, X, = a, to Series A (X,=1nZ)

) Test Q
Variance X, Varlfmce Parameters
2 of residuals D.f.
oy 2 of model
Xo.0
0.209 0.025 ¢, =0.65+0.06 46.8
R =0.94 47
(coefficient of 64
correlation)

=

c(fj)

wn

0 .25 S

Fig. 6. Cumulative periodogram for residuals of model (1—¢,B)V,, X, =q, (Series A)
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Table 2

Fitting of model (1—¢, B)V,, X, = a, to series B (X, =1nZ)

--- FORECAST 1 STEP AHEAD

] Test Q
Variance X, Varlfmce Parameters
2 of residuals D.f.
0% 52 of model
X505
0.0783 0.0121 ¢, =0.394+0.08 31.0
R =092 47
64
3
Lo —— ORIGINAL  DATA
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Fig. 8. Autocorrelation function for differentiated
Series B (V,, X;X,=InZ)
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Fig. 7. Hourly water consumption and forecast for town R (Series B, zZ)
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Fig. 9. Partial autocorrelation function
for differentiated Series B (V,, X,)
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Fig. 10. Autocorrelation function for residuals of ~ Fig. 11. Cumulative periodogram for residuals of
model (1—¢,B)V,, X, = a, (Series B) model (1—¢,B)V,, X, = a, (Series B)

x2=106 DF=8

2
Xg5 =155

Fig. 12. Histogram.for residuals of model (1—¢,B)V,, X, = a, (Series B)

32. WASTEWATER INFLOW TO THE SEWAGE TREATMENT PLANT OF TOWN R

Figure 13 shows inflow rate variations for the sewage treatment plant of town R
(Series C, Z,) and periods of rainfall R received by this area. The autocorrelation
function and partial autocorrelation function (after transformation of X, = In Z, and
V,. X,) are shown in figs. 14 and 15, respectively. The form of the autocorrelation
function suggests that model

(1—¢, B)V,, X, = a,(referred to as M1)

may be suitable.
The results of fitting are gathered in tab. 3, and the results of the analysis of the
model M1 residuals are plotted in figs. 16-18. Neither test Q nor the periodogram
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Fig. 13. Inflow to sewage treatment plant of town R (Series C, Z,)

call the independence of residuals in question and their distribution may be
considered normal at the significance level between 0.025 and 0.05. Comparison of
the data with one-step-ahead forecasts (fig. 19) reveals significant discrepancies at
40 h. These should be attributed to the high inflow rate experienced the day before as
a result of heavy rain. When transforming model M1 it becomes obvious that the
actual forecasts are influenced by the inflow rate measured the preceding day. Hence,
we obtain -

X, =072X,_1+X,-24—072x_55+a,.

"k kK
+1 +1
05 0.5
L +SD P . +SD
”Iun Ll I L] : I LS55 B L K
T e K i ' ! -SD
T -SD
05 85
-1
-1
Fig. 14. Autocorrelation function for differentiat- Fig. 15. Partial autocorrelation function
ed Series C (V,, X)) for differentiated Series C (V,, X))

If the hourly inflow rates measured within the preceding 24h are different from
normal, their influence on the future inflow values disappears after a time shorter
than 24h. The model M1 fails to include this effect.

4 — EPE 2/87
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Fig. 16. Autocorrelation function for residuals Fig. 17. Cumulative periodogram for residuals
of model M1 of model M1
x2=19.48 DF=10 a = 0.00103
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Fig. 18. Histogram for residuals of model M1
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Fig. 19. Inflow to sewage treatment plant of town R and forecast of model M1
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Fig. 20. Autocorrelation function for Series Fig. 21. Autocorrelation function for residuals
C (X) of model M2
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Fig. 22. Cumulative periodogram for residuals Fig. 23. Histogram for residuals of model M2
of model M2
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Fig. 24. Inflow to sewage treatment plant of town R and forecast of model M2
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Table 3
Fitting of models M1, M2 to series C (X, =1nZ)
Test Q
Variance X Variance Parameters of the model
8 2 ' Model of residuals and correlation D.f.
%x o’ of parameters for it "
Xo.05
M1 0.00997 ¢, =0.7240.06 344
R =0.76 47
64
0.02343
M2 0.00892 1. ¢, =0.75+0.07 60.9
R =0.79 2.0, =—01240.10 46
R, , =060 63

Irrespective of the fact that the autocorrelation function of Series C (X,) presented
in fig. 20 fails to suggest such an approach, model M2

(1—¢,B)X,=(1-0,B)q, | (M2)

was also checked for our purpose. The results of fitting are shown in tab. 3 and figs.
21-23. Comparing the one-step-ahead forecasts with the data in fig. 24, it becomes
obvious that there are no disturbances which were present in model M1.

3.3. RAINFALL: AN ADDITIONAL VARIABLE OF THE MODEL

It may be expected that when the relationship between the influent sewage stream
and the precipitation volume is taken into account, the model displays a smaller
variance of residuals. Unfortunately, no measured-values of the rain volume received
by the area of interest were at hand when recording the influent sewage rate Y. The
only information available then was whether or not if rained on a given day. Thus,
the rainfall periods (R in fig. 13) were assigned unity, whereas the periods with no
precipitation were assigned zero. The series obtained via this route, D (X}), consisted
of a number of 0 and 1, thus enabling the approximate representation of rainfall
phenomena in the investigated period.

Series C was transformed by logging and substracting the mean (¥, =In ¥/ —In Y/),
and Series D by detracting the mean alone (X, = X;— X;). Model M4

Y W, 1

- % _x,_ M4
‘= 1=6,B " 1_¢, B0, B M

was fitted, and the results are listed in tab. 4.
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Fitting of model M4

53

Table 4

Test Q Test S
‘2;2:;2 Variance Parameters of the model
(nY) of residuals and correlation D.f. D.f.
2 o2 of parameters for it 2 2
y Xo.05 Xo.05
0.00801 b=2
0.02343 R =0.81 1.6, = —0.56+0.15
2. wy = 0.1740.04 37.7 19.7
3. ¢, =0.95+0.08 34 35
4. ¢, = —0.20+0.08 48.6 49.8
R, , =063 R, ;= —006
R, ,=005 R, ;= —008
R,,=008 R, =079
K 5%
+1 1
Q=377 DF =34
2 -
X5 = 486
0.5
N N I +SD
/] | B i 7% i B 7 1
{0 | Y (AU R T K
= I -SD
05
0 25 .5
Frequency, fj
-1

Fig. 26. Cumulative periodogram for residuals

Fig. 25. Autocorrelation function for residuals

x2=19.0 DF=11

2 =
7(0_05 19.7

of model M4
of model M4
rm:c.(K)
d= - 0.00452 1 52=19.7 DF =35
SD = 0.088 Xms:t,g,a
05
I ! 'SD
e AL X
'SD’
05
1

Fig. 27. Histogram for residuals of model M4

Fig. 28. Cross correlation function for residuals
of model M4 and prewhitened input
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Fig. 29. Inflow to sewage treatment plant of town R and forecast of model M4

As shown by the data in figs. 25-27, the residuals of the model are independent
and display a normal distribution. The assumed independence of noise and
prewhitened input X, has also been confirmed (fig. 28). The comparison of
one-step-ahead forecasts for model M4 with the available data (fig. 29) reveals that
even a rough estimation of the precipitation volume is sufficient to improve the
forecast established in the 16th hour of measurement (see fig. 24).

3.4. WATER CONSUMPTION INCLUDED AS AN ADDITIONAL VARIABLE OF THE MODEL

The application of data on water consumption (Series B (X7)) to the modelling of
sewage inflow Y; is exemplified by model MS. Series B and C were transformed by

logging and by substracting the mean (¥, = In ¥y —In ¥}; X, = In X;—In X;). Analysis
of correlations and, later on, the estimation of parameters have revealed that the best

Table 5
Fitting of model M5

Test 9  Test S

In.put Variance Parameters of the model
varlanlce of residuals and correlation D.f. D.f.
(%) = o for
= < parameters for it ) 2
gy Xo.05 Xo.05
b=0
0.00698 1. 6, = 0.68+0.07 19.9 229
2. wy = 0.18+0.03 35 35
0.02343 R =0.84 3. ¢, =0.65+0.06 49.8 49.8
R, ,=—058
R, , =002

R,, = —001

2,
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Fig. 30. Autocorrelation function for residuals
of model M5
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Fig. 32. Histogram for residuals of model M5
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Fig. 31. Cumulative periodogram for residuals

of model M5
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Fig. 33. Cross correlation function for residuals
of model M5 and prewhitened input
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Fig. 34. Inflow to sewage treatment plant of town R and forecast of model M5
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results can be achieved by anticipating delay b = 0. The fitting procedure was carried
out for model M5 of the form

X,+ a,. (M5)

Table 5 gives the results of fitting for model MS5.

Although the residuals of model M5 are independent (which is proved by the
analysis of figs. 30 and 31), their distribution fails to be normal (fig. 32). Analysing the
cross correlation between noise and prewhitened input X, (fig. 33), it becomes
obvious that the model is well fitted (fig. 34).

4. CONCLUSIONS

First-order autoregression seasonal models give a good approximation of hourly
water consumption. The residuals of the models satisfy the condition of indepen-
dence and display a normal distribution. Residual variances are insignificant, and so
are the errors of forecasts with a small number of steps ahead. The presence of the
seasonal differentiating operator Vg accounts for the periodic nature of the forecast
function. That is why forecasts with many steps ahead do not tend to an average
value. They have the ability to adjust themselves to the periodic nature of the time
series (however, errors associated with many-steps-ahead forecasts are considerable).
The application of such models to the description of sewage inflow to the treatment
plant through a separate sewer system yields significantly worse approximating
effects. The main reason is the considerable disturbance in the behaviour of flow due
to the irregularity of rainfall. Such disturbances become particularly distinct when
large amounts of precipitation water enter the sewer system illicitly from a great
number of inlets. The inclusion of this source of disturbance in the model requires the
wastewater inflow to be correlated with the precipitation volume received in the area
of interest.
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STOCHASTYCZNE MODELOWANIE ZUZYCIA WODY I ZRZUTU SCIEKOW

Stochastyczne modelowanie zuzycia wody, zrzutu $ciekow oraz ich jakosci ma duze znaczenie w
inzynierii sanitarnej. Wiaze si¢ ono z zaopatrzeniem w wodg i sterowaniem procesami oczyszczania wody i
Sciekow. Przedstawiono zagadnienia stochastycznego modelowania zuzycia wody wodociagowej i
doptywu sciekow do oczyszczalni systemem kanalizacyji rozdzielczej. Sezonowe modele autoregresji
pierwszego rzedu (z okresem S = 24) dobrze przyblizaja godzinowe zuzycie wody. Zastosowanie ich w
modelowaniu godzinowego doptywu sciekow do oczyszczalni nie jest w petni efektywne z powodu
nieregularnych zaklécen przeptywu wywolanych opadami deszczu. Uwzgledniajac opad deszczu lub
zuzycie wody jako dodatkowa zmienna objasniajaca, uzyskuje si¢ modele dajace lepsze efekty apro-
ksymacji.

CTOXACTUYECKOE MOJEJIMPOBAHUE
IMOTPEBJIEHUA BOJbI 1 OTBPOCA CTOYHBIX BOJI

CToXacTu4eckoe MOJIETHPOBAHAE NOTPEGIICHHs BOABI M OTGPOCA CTOYHBIX BOJ 4 TAKXKE HX KAYeCTBA
uMeeT OOJIbIIOoe 3HAYEHHE B CAHUTAPHOM TexHOJIOrHH. OHO CBSI3aHO CO CHaGXEHHEM BOJIOH U yIpaBiie-
HHEM IPOLECCAMU OYHUCTKHM BOJBI M CTOYHBIX BOA. IIpeacTaBiieHbI BOIPOCHI CTOXaCTHYECKOTO MOJEIIH-
POBaHus NOTPeOIEHUs] BOMOTIPOBOHOM BOJIBI U JOGEraHUsI CTOYHBIX BOJ K OYMCTHOM CTAHIIMH CHCTEMOMR
paszieibHOM KaHanu3anud. Ce30HHBIE MOJIEIM aBTOPETPECCHH IIEPBOrO MOpPsAKa (C mepuoaoM S = 24)
XOpouo npubamkaroT nmoTpebieHue BoAbI 3a 4ac. VIX NpHUMEHEHHE /ISl MOJETMPOBAHHS YaCOBOTO
HoGeraHusi CTOYHBIX BOJ K OYHCTHOW CTAaHIMH He BIOJIHE 3b(EKTHBHO M3-32 HEPETYJIAPHBIX IIOMEX
TCYCHHS| BBI3BAHHBIX OCAJKAMM. VY4UMTHIBAs OCAJKH MM IIOTpeGICHME BOABI Kak 106aBOYHYIO
Pa3bACHSIOLIYIO MEPEMEHHYIO TOJIYYaloT MOMIENH Jarouue Jydiune 3G¢eKTsl anmnpoKCHMAIHH.



