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Theory and applications of the far field double
diffraction on the progressing spatial phase
modulation and stationary amplitude grating

Krzysztof Patorski

Institute of Design of Precise and Optical Instruments, Warsaw Technical University,
ul. Chodkiewicza 8, 02-525 Warsaw, Poland.

Time dependent irradiance distributions in the three lowest diffraction orders
in the far field of stationary amplitude and moving phase gratings of the same
spatial period are theoretically investigated. General formulae are developed
for separated gratings placed in an arbitrary order on the optical axis. They
allow an optimization of the amplitude of time-dependent harmonics in 0 and
*+ 1 double diffraction orders by a proper choice of the separation distance
between the gratings. The differences in optimization conditions for 0 and + 1
diffraction beams are related to the Talbot distance. Practical applications of
theoretical investigations are discussed.

1. Introduction

The phenomenon of double diffraction on periodic structures has recently
gained the considerable interest due to the widespread use of laser radia-
tion. Its theoretical analyses and practical applications proposed can be
divided into three main groups. The first one is concerned with the use
of a pair of diffraction structures in various types of double-grating interfe-
rometers [1]. The second group of investigations deals with the Fresnel
diffraction field of dual gratings [2], whereas the third one is concerned
with the far field theory of double diffraction and its applications [3].
This work deals with theoretical aspects of the far field double diffrac-
tion phenomenon. Until now, its properties were presented from the
point of view of its particular application, e.g. displacement measurement
[4, 5], absolute position monitoring [6], ad pattern alignment [3, 7, 8].
Another type of application deals with the phenomena present in double
diffraction on a stationary amplitude grating and moving periodic spatial
phase modulation generated, for example, by a progressing acoustical
wave [9, 10]. In this case the temporal irradiance dependence in the far
field diffraction orders was proposed for the light modulation and for
the measurement of the amplitude of phase modulation. However, the
analyses presented in the referenced works [9, 10] were conducted for
special configurations of double diffraction setup, e.g. the fixed distance
between the phase grating placed before the amplitude grating and for
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the spatial coincidence of two periodic modulations. The goal of this
work is to present a general analysis of the irradiance distributions in the
three lowest diffraction orders 0 and £ 1 in the far field of a progressing
phase modulation and stationary amplitude grating arbitrarily situated in
space. The three lowest diffraction orders are the most important ones from
the point of view of practical applications of the phenomenon and, more-
over, its analysis explains all major characteristics of the far field double
diffraction. The theoretical analysis will show important differences
between zero and first order irradiance modulation curves depending on the
gap distance. The results lead to suggestions as to the accuracy improve-
ment of the method of measurement of very small amplitudes of phase
modulations, and constitute general guidelines to experiments on double
diffraction and considering light modulation techniques.

2. Theoretical analysis

The complex amplitude transmittance of a progressing sinusoidal phase
grating will be expressed as
®

exp ji-BcosMn- -fisjj = JT* iwvdm(B)exp jim |2rc-"+/sjj, @)

where B designates the amplitude of phase modulation, d is the spatial
period of the grating, x is the direction perpendicular to grating lines,
and p describes a temporal change of phase imposed by a displacement
Ax of the gratings in the x direction

p = 2rc—Ad-X = ZTV— - = at, )

where Vais the velocity of wave generating the progressing phase grating,
Q designates its radial frequency, and t is a time parameter. In eq. (1)
the Jacobi-Anger formula was used and Jm[B) is the m-th order Bessel
function. In the following analysis two types of stationary diffraction
gratings will be considered: single-frequency and general amplitude
transmittance gratings.

2.1. The case of sinusoidal amplitude diffraction grating

2.1.1. Stationary amplitude grating placed behind progressing phase grating

Single frequency amplitude diffraction grating will be expressed as
(7+Acos2j u—é‘— 3

The two gratings of the same spatial period d are assumed to be of infinite
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extent, mutually parallel and normally illuminated by a plane, A quasi-
monochromatic spatially coherent wavefront. By using the approach
of angular spectrum of plane waves [11] the amplitude of light field in
the plane of amplitude grating is calculated as

E(x,2) = cos2:rchj exp i +/9

Xz\
_**’_))| w

Therefore, the amplitude of double diffracted beam of spatial frequency
lijdand forming +1 st diffraction order in the far field is

E+i = YJ*{B)+iCJIx{B) exp itf-TiL-1**) - ~ J 2(B)
xexp i(2/9—infa/d?2). (5)
Its irradiance is calculated as
I+ = >2JI(B) + — [JI(B) +JI{B)] —ACJ0{B)J1{B)
xsin (9—nAz/d2) —AGJ1{B)Ji sin (9—STtAz/d2)

~ Y J oB)J2(B) cos(2/9—Antej(P). (6)

It can be seen from eq. (6) that the time-dependent irradiance is composed
of the three temporal frequencies described by terms with 0 =0,1/9,
and 2/9. After further simplifications the constitutive temporal harmonics
are described as

iy = -AC.J,(B) Ccos JJ

. . 7
JO(B) SinfAr-) +JAB) Sin(3reh-) S
X sm M-arc tan (0] 74— ot

JO{B) cos|?r-~j +J2(B) co s "

i*/i

— }-Jo{B)J2{B) cos (2/9—4TtAz/d2).
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Similar calculations can be performed for the —(1_j) and 0(10) diffrac-
tions orders. The results are quoted below.

= Pm
J-. = -i-€JI(B)*JI(B)+JI(B)+2J0(B)J3(B) cos
. X2\
Jo(B) sin|_, i G
xsm P-faretan r1?) SING- » )
JO(B) cos |
) S Cml )
A
.. = -~ J O{B)J2(B)co8{2p + AixzcHf
and

A2
n =c2l(B)+~JI(B),
Ij = 2ACJ0(B)J1(B) sin {nXzjtf) cos p, )
=YJ\{B) cos 2p.

The following properties of irradiance distributions in +1,0, and —
double diffraction orders can be deduced from egs. (7) and (8):

1. The amplitudes of the bias and second temporal frequencies are
independent of the separation distance z between the gratings. For
z = Md2X{d2/X) is the so-called Talbot distance known from the theory
of the self-imaging [11]), and z— (M +1/2)d2/Athe second harmonics in
all discussed diffraction orders are mutually in phase, M is a positive
integer including 0 (corresponding to the case of coincidence of phase and
amplitude gratings).

2. For z = Md2jX the fundamental harmonics of the time-dependent
irradiance in orders £ 1 have equal amplitudes

I'+l(* = Md2X) = +ACJL(B)[JOB)+<72(B)]sin/9, (10)

but are mutually out of phase. For small values of B it follows from the
properties of Bessel functions that the condition z — Md2/X coincides
with the condition of maximum amplitude of the fundamental harmonic
of irradiance changes in the +1 diffraction orders. At the same time the
fundamental harmonic in the zero order vanishes.

3. For z = (M+1/2)d2/X the fundamental harmonic in +*1 double
diffraction orders have co-phasial and equal amplitudes

d2ix) = -AGJ1LB)[JO(B)-Jz(B)]cobp. 11
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Simultaneously, the fundamental temporal component in 0 order attains
the value

He = |if+ ¢ dm) = £2 cos y§ (12)

with the upper sign for M even, and the lower one for M odd. It is inter-
esting to note that the amplitude of fundamental harmonic in eq. (12)
is larger than that described by eqg. (10). Practical consequences of this
fact will be discussed below.

2.1.2. Single-frequency stationary grating placed in front of progressing phase grating

Now let us discuss for comparison the case of identical amplitude transmit-
tance sinusoidal grating placed in front of progressing phase modulation.
The complex amplitude of the light field in the plane of phase grating
is given by

E'{x,2) 1|lc + Rxp (1_ fan) on Xy

X Jr imJ m(B)exp in f +M)J. (13)

By performing similar calculations to those presented above the following
formulae for the harmonics of the time-dependent irradiance in the sym-
metrical +1 and —1 double diffraction orders are obtained

131 =LA =i
I'Il = TACJAB)[j I(B)+JI1(B)+2J0(B)J2(B) cos(2 * )] R

JO(B)-J2B)

——
X sin j/5+ arctan £J,(B)+J,(B) tan (* <

'y = Al J,,(B)J, (B )oos 2/9. (14)

Moreover, it can be easily shown that the expressions for temporal harmo-
nics in the zero double diffraction order are identical with those valid
for- the case of amplitude grating located behind the progressing phase
grating.

The comparison of eq. (14) with egs. (7) and (8) shows no important
differences between the cases of the amplitude grating placed in front
of or behind the phase modulation. For the characteristic separation

distances . = Md2K and . = + ijd 2/A discusssed above, the corres-
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ponding temporal harmonics in +1, —1, and the 0 diffraction orders take
the same values in both cases. The only differences can be seen in the
expression for 11 and I'Jli in the terms depicting the phase shift of the
harmonics being proportional to the values of arctan. Moreover, it is
interesting to note that the second temporal harmonics, in the case of
amplitude grating placed in front of the phase one, has no phase shift
proportional to the separation distance z.

2.1.3. Discussion

Let us discuss the practical implications of the properties of double diffrac-
tion field in the =1 and 0 orders developed above. They can be analysed,
for example, from two points of view. The first one concerns the method
of selective detection of the fundamental component of time-dependent
irradiance in one of the first diffraction orders for noise-free measurement
of the amplitude B of phase modulation. In the case of spatial coincidence
of phase and amplitude modulations [10], knowing the amplitude grating
parameters A and C and measuring the diffraction efficiency of the fun-
damental temporal harmonic of irradiance, the amplitude B can be esti-
mated. However, it follows from the analysis presented above that the
same results are obtained for the separation distances z — Md2/Abetween
the stationary amplitude grating and investigated phase modulation,
irrespectively of the order of placing the two modulations on the optical
axis. This fact is very important in practical investigations when the ampli-
tude grating cannot be located in the plane of progressing phase grating
[9,12]. Due to our proposal no additional lens [12] used for imaging
the phase modulation onto the amplitude grid is required. The exact
fulfillment of the condition z = Md2\ can be checked by observing the
moment of vanishing of the fundamental temporal harmonic in the zero
double diffraction order.

Moreover, even the higher accuracy of the method can be obtained by
performing the measurements in the zero far field order. However, in this
case the separation distance z should be (M+112)(PIA., see eq. (12). The
fulfillment of the conditionz = (M +1/2) d2/A is realized by maximizing
the basic temporal harmonic in the zero order or by checking the in-phase
relationship between basic harmonics in +1 and — diffraction orders.

Additionally, if the technique using the detection of the difference
in irradiances between -fl and —1 orders [7] is applied to selectively
filtered fundamental harmonics I pland IL X then for the planes z — Md2/A
the detected irradiance difference

ltx{z = Md21D)-1glE = MtfIX) =2 ACIYB)[JO{B)+JI2(B)]sinp,
(15)

has the amplitude twice as high as in the case of single +1 or —1 diffraction
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order detection, eq. (10). This is due to the out-of-phase relationship
between the harmonics 1 pl and It 1at those planes. It follows from the
above discussion that the conditions for optimalization of temporal basic
harmonics of irradiance changes in £ 1 and 0 double diffraction orders are
basically different considering the separation distance between the progres-
sing phase grating and a stationary amplitude grid. The choice of the
detection mode should be dictated by the actual experiment conditions.

The other field, where the above developed properties of double diffrac-
tion phenomenon find an application, is light modulation. The doubly
diffracted —, +1, and 0 order beams can be used for that purpose. The
amplitudes gf fundamental or second temporal harmonics expressing the
depth of modulation can be optimized for the particular values of para-
meters B, A, and C by making use of the equations developed above.

At the end of this chapter some additional remarks seem to be necessa-
ry. In the foregoing analysis the pure amplitude transmittance single-
frequency grating was assumed. In practice, however, interference gratings
produced photographically with high contrast values are always accom-
panied by higher harmonics due to the nonlinearities of film reiording
process and the phase-relief effects. The relief-free nonlinearity effects
provoke the consideration of a general amplitude transmittance grating
instead of a sinusoidal one, this will be done in the following. Moreower, the
arbitrary contrast single frequency amplitude modulations can be genera-
ted from binary gratings by spatial filtering process. On the other hand, the
phase relief effects cause the complex amplitude transmittance of an
interference type grating. They cannot be separated by a spatial filtering.
Unless the index-matching immersion technique is used, the conditions
derived for maximalization of temporal harmonics well be changed. The
related problem has been recently studied in the case of near Fresnel
diffraction field parameters of a complex transmittance grating [13]. The
detailed considerations are, however, out of scope of this paper.

2.2. The case of general amplitude transmittance stationary grating

The transmittance of a general amplitude grating is expressed in the form
of Fourier series

exp i2nn % (16)

where d designates, as before, the grating period, and An are Fourier
coefficients describing the amplitudes of diffraction orders. Now, the
calculations similar to the ones given in previous chapter have to be
performed in order to find the time-dependent irradiance in double diffrac-
tion orders +1 and O.
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Below the results for the amplitude grating placed behind and in
front of progressing phase modulation are listed up to the second temporal
harmonic. It is necessary to say, however, that in the case of a general
amplitude grating, different from the so-called Ronchi ruling (e.g. a square-
wave grating with equal stripe and space width) higher temporal harmonics
than 2 appears in diffraction orders. However, they are of less importance
and we will not quote mathematical formulae describing them. The most
practical case, e.g. the Ronchi ruling will be obtained as a special case
of general transmittance grating. The formulae are as follows :

For the case of amplitude grating located at a distance z behind the

phase grating the irradiance harmonics in the zero double diffraction order
are

n=A]J*+2]J
fca
®
H — sin +4 N AKJI KA k+1J k+l
X sin cos /5, @1
np—| ~AO0JOA2)2cos +2A\0\—4  AkJKAk+2]

x cos j4(fc+1)ra-~Jj cos 2p,

and in *1 diffraction orders

il =aW + 2 aijitxt 2 aiji_X
&

k=l
I+, = TZAgAMN"]jOsin He. sin™/5 =F38T—-Jj
oo Xz~\
N2 A kA k+. [jk+1J k+2 sin ~p T(2fc +3)™-"rd (18)

-J,J _1sinx A @fc)n ,

I+l = 217M0A*Jip! cos20-J acos2px8 ™ jj

~ yrjAkJk- C O S —y, AKAk+2Jk~iJ,
*1 \ d/ iéi
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x cos 123 4fot™h-] —  AKAK+2 k] k+z
' LKA

X cos 25 =F(4fc+ 8)3t-7jJ, (18)

where, for simplicity, the abbreviation Jk(B) = Jk was used. In the case

of amplitude grating located in front of the phase modulation the far
field formulae read:

— For the 0 order double diffraction beam

]

&

= Xoo
N5 = £bs (19)
X¢ —X8)
— For the =1 order beams
TO _ jo
I'li = T2A0"iNi|"0Sin +J2sin|PTn

T2n  AKAK+|Jk+iJkez sin PBT (2fc+1)A—1
o=l x J

—Ak<fkH SN [V £ @fc+1)W I, (20)

120 =2"A0Ai1J1jJicos"23+ 4a™ J-Jscos”23F472rj]j

~ ¢ UK-1Jk+i cos 23- 2 1Pk-A-ic+zIk-\Jk+|
o= 4

x cos|"2/3x4(fc+1)7r~j — V AkIk+IAk+2) k+3 cos jA2~T4(fc+!1)ft-jyjj-

The case of Ronchi-type binary amplitude grating is obtained by in-
serting into egs. (17)-(20) the condition Ak = 0 for keven. Therefore, if
compared to the single frequency amplitude grating the fundamental
temporal harmonic of the irradiances in £1 and O orders are expressed
by the same expressions in these two cases, when noting the correspon-
dences A0O= 0, and A =2A=l. Thus, the whole discussion concerning
the optimization of the fundamental harmonic amplitude given above
for the sinusoidal grating is valid for the Ronchi ruling. These two types
of amplitude gratings are most frequently used in practice.
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The influence of the separation distance z on the temporal harmonies
in 0and % 1 diffraction orders in the case of general amplitude transmittan-
ce grating can be deduced from egs. (17)-(20). Its character is very similar
to the case of sinusoidal grating discussed in detail before.

— 0 double diffraction order:

The bias components in the cases of amplitude grating placed before or
behind progressing phase modulation are the same and independent of
the separation distance z. The fundamental component 10 equals zero

atz — Md2k (Talbot distances) and takes maximum values at z =
d2jk with opposite signs for M even and odd, respectively. Second temporal
harmonic assumes identical expressions for z = Md2k and z —

d2k for all values of M.
— +1 double diffraction orders:

Here the bias components are also independent of the separation distance
between the modulations. Fundamental harmonic I pland I ti are mutually
out-of-phase at the planes z — Md2k and they change sign for M even

and odd. At the planes z amplitudes of fundamental

temporal harmonics in orders +1 and —1 are equal for a particular value
of M and their sign is opposite for M even as compared to M odd. The
second time-dependent harmonic takes the same value for all separation
distances z — Md2/k.

Because of the apealing similarity of basic characteristics, just quoted,
and characteristics of the case of single-frequency amplitude grating with
respect to the influence of the separation distance z, their discussion from
the point of view of practical implications can be reffered to Chapter 1.
However, mathematical expressions relevant to the case of amplitude
grating of general transmittance are much more complex. Therefore, the
use of sinusoidal or Ronchi-type binary rulings as stationary amplitude
gratings is preferable.

For the sake of completeness, however, it is worthy to mention at the
end of this Chapter about the additional possibilities the general amplitude
transmittance gratings present over the single frequency gratings. They are
characterized by higher diffraction orders and, therefore, their contri-
bution to higher double diffraction orders as well as to all temporal harmo-
nics in every double diffraction order is to be apprehended. In the case
discussed in the present work, e.g. the amplitude and phase modulations
of the same spatial period higher diffraction orders require higher dif-
fraction beams from the progressing phase grating that are being absent
in the case of small amplitudes B of phase modulation. Therefore, they
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cannot be used for measurement of this amplitude. With respect to other
application, e.g. light modulation, by the proper choice of B the light
modulation depth can be of appreciable value in higher double diffraction
orders. Moreover, the selective detection of higher temporal harmonics in
all diffraction beams can be tried.

The numerical studies of the problem of dephasing between positive
and negative double diffraction orders of the same number and relative
phase relation between increasing orders irradiance distribution have
been recently made [9]. Total irradiance curves including all time harmonics
were calculated. However, the inspection of the fundamental harmonic is
sufficient for this purpose. By using an analytical approach presented in
chapter 2 the expressions for I£N can be derived. In the case of Bonchi-type
binary ruling most frequently used in practice they assume especially
simple forms

78N — -F2)o-4ijanan Fpar— I
+In<h+H sinAT(2iV 21,
and
I£N = iF2J.041 sinjVv
N*N+1Sn IR ‘F» (22)

Equations (21) and (22) relate to the cases of Bonchi ruling placed
behind and in front of the progressive phase modulation, respectively.
They enable a very simple interpretation of the dephasing problem.

If the modulation frequency is a deciding factor then the amplitude
grating of a frequency n times higher than that of the phase grating should
be used. In such a case +1 double diffraction order comprises the w-th
diffraction beam from the phase grating and +1 st beam from the amplitude
one, and their harmonics. The phase of the w-th order beam changes n
times faster with the phase modulation displacement than in the case of
1st order beam exploited when two gratings of the same spatial frequency
are used. Therefore, the light modulation frequency will be n times higher
than the frequency of progressive grating. The same conclusion based on
the numerical analysis was reached in [9]. The analytical expressions for
time-dependent irradiance in the far field of dual phase-amplitude gratings
of unequal frequencies could be derived similarly to the expressions
presented in foregoing chapters. For the both cases very important general
remark is to be apprehended : when using higher number double diffraction

6 — Optica Applicata XI/1
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orders the influence of the gratings separation distance z is w2times pro-
portionally greater (n —the number of double diffraction order exploited)
than when using +1 diffraction orders [3,6].

3. Conclusions

General expressions for the time-dependent irradiance distributions in 0
and —1 far field double diffraction orders of progressing phase modulation
and stationary amplitude grating of the same spatial period and arbitrarily
situated in space were developed and discussed. The gratings were assumed
to be of unlimited extent and normally illuminated by a plane spatially
coherent quasimonochromatic wavefront. The cases of single-frequency
and general amplitude transmittance gratings were studied and compared.
The influence of gratings separation distance on the amplitude and phase
of the temporal harmonics of irradiance in diffraction orders was emphasi-
zed. It was found to be related to the so-called Talbot distance known
from the theory of self-imaging. The properties of the far field double
diffraction pattern change periodically with the increasing separation
distance between phase and amplitude periodical modulations, with
a period a? equal to the Talbot distance.

Practical implications of theoretical analysis were presented in the
cases of application of double diffraction to determination of very small
phase modulations and problems of light modulation. It has been shown
that by the proper choice of gratings separation distance the practically
exploited parameters of 0 and =1 diffraction beams can be optimized.
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Teopuss U NPUMeEHeEHWe [BOWHON AWdpakuMM Aanékoro nonsi Ha CUCTeMe, COCTO-
AlWeld U3 MOABWMKHOM pewéTKM c (asoBol MOAynsuMein 1 cTauMoHapHOW amniu-
TYAHON peLéTKN

MpunBefeHbl TEOPETUYECKME PACCYXKAEHNS MePeMEHHbIX BO BPEMEHW pacrpefenieHnii UHTEHCUBHOCTY
B TPEX HAMHM3CLUNX NopsiAKax Audpakumm Aanékoro AndpaKLMOHHOro Nos cucTeMbl ABYX Andpa-
KUMOHHbIX PEeLETOK: CTauMoHapHOW aMnaNTYAHOM v 6eryuieii (asoBoii.

BbiBefeHbl 06LWne opMynbl ANS PELETOK, CTOAWMUX B /060K 04epEéaHOCTU M Ha /o6om
PaccTOSHUM OTHOCUTENIbHO ApYr Apyra. 3TU (opMysbl NO3BOASIOT ONTUMU3NPOBATbL amMnAUTyay
BPEMEHHbIX FapMOHUWI COCTaBASALWMX pacnpefeneHnii MHTEHCUBHOCTU B MopsigKax Audpakumm
Owu + 1 nocpefCcTBOM NOA6GOPA MeXPELLETHaToOro paccTofaHMsA. PasHuLa B yCN0BUSIX ONTUMMU3ALUN
CBsi3aHa C TaK HasblBaeMbIM pacCTosiHMeM TanGota. OBCYXAeHbl NPaKTUYecKUe MNPUMEHEHUS
BbIBEfJEHHbIX TEOPETUYECKMX 3aBMCUMOCTEN.



