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Theory and applications of the far field double 
diffraction on the progressing spatial phase 
modulation and stationary amplitude grating

K rzyszto f P atorski

In stitu te  of D esign  of Precise and Optical Instrum ents, W arsaw T echnical U niversity , 
u l. C hodkiew icza 8, 02-525 W arsaw, Poland.

T im e dependent irradiance d istributions in the three low est diffraction orders 
in th e  far fie ld  of stationary am plitude and m oving phase gratings of th e  sam e  
spatia l period are theoretically  investigated . General form ulae are developed  
for separated gratings p laced in  an arbitrary order on th e  optical axis. T hey  
allow  an optim ization  of the am plitude of tim e-dependent harm onics in  0 and  
± 1 double diffraction orders b y  a proper choice of the separation d istance  

betw een the gratings. T he differences in  optim ization conditions for 0 and ±  1 
diffraction beam s are related to  the T albot distance. Practical applications o f  
theoretical in vestigations are discussed.

1 . Introduction

The phenomenon of double diffraction on periodic structures has recently 
gained the considerable interest due to the widespread use of laser radia­
tion. Its theoretical analyses and practical applications proposed can be 
divided into three main groups. The first one is concerned with the use 
of a pair of diffraction structures in various types of double-grating interfe­
rometers [1]. The second group of investigations deals with the Fresnel 
diffraction field of dual gratings [2], whereas the third one is concerned 
with the far field theory of double diffraction and its applications [3].

This work deals with theoretical aspects of the far field double diffrac­
tion phenomenon. Until now, its properties were presented from the 
point of view of its particular application, e.g. displacement measurement 
[4, 5], absolute position monitoring [6], ad pattern alignment [3, 7, 8]. 
Another type of application deals with the phenomena present in double 
diffraction on a stationary amplitude grating and moving periodic spatial 
phase modulation generated, for example, by a progressing acoustical 
wave [9, 10]. In  this case the temporal irradiance dependence in the far 
field diffraction orders was proposed for the light modulation and for 
the measurement of the amplitude of phase modulation. However, the 
analyses presented in the referenced works [9, 10] were conducted for 
special configurations of double diffraction setup, e.g. the fixed distance 
between the phase grating placed before the amplitude grating and for
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the spatial coincidence of two periodic modulations. The goal of this 
work is to present a general analysis of the irradiance distributions in the 
three lowest diffraction orders 0 and ± 1 in the far field of a progressing 
phase modulation and stationary amplitude grating arbitrarily situated in 
space. The three lowest diffraction orders are the most important ones from 
the point of view of practical applications of the phenomenon and, more­
over, its analysis explains all major characteristics of the far field double 
diffraction. The theoretical analysis will show important differences 
between zero and first order irradiance modulation curves depending on the 
gap distance. The results lead to suggestions as to the accuracy improve­
ment of the method of measurement of very small amplitudes of phase 
modulations, and constitute general guidelines to experiments on double 
diffraction and considering light modulation techniques.

2. Theoretical analysis

The complex amplitude transmittance of a progressing sinusoidal phase 
grating will be expressed as

oo
exp ji-B c o s^ ^ -  -f/sjj =  JT* ¿wJ m(B)exp jim |2rc-^+ /sjj, (1)

where B  designates the amplitude of phase modulation, d is the spatial 
period of the grating, x  is the direction perpendicular to grating lines, 
and p describes a temporal change of phase imposed by a displacement 
Ax of the gratings in the x  direction

Ax V J
p =  2rc —-  =  2Tr—2- =  a t, (2)

d d

where Va is the velocity of wave generating the progressing phase grating, 
Q designates its radial frequency, and t is a time parameter. In eq. (1) 
the Jacobi-Anger formula was used and J m[B) is the m-th order Bessel 
function. In  the following analysis two types of stationary diffraction 
gratings will be considered: single-frequency and general amplitude 
transmittance gratings.

2.1. The case of sinusoidal amplitude diffraction grating
2 . 1 .1 .  S ta t io n a r y  a m p litu d e  g r a tin g  p la c e d  b e h in d  p r o g r e ss in g  p h a se  g r a t in g

Single frequency amplitude diffraction grating will be expressed as

(7+A cos2jü-̂ -. (3)
d

The two gratings of the same spatial period d are assumed to be of infinite
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extent, mutually parallel and normally illuminated by a plane, A quasi- 
monochromatic spatially coherent wavefront. By using the approach 
of angular spectrum of plane waves [11] the amplitude of light field in 
the plane of amplitude grating is calculated as

E (x, z) = cos2:rc^j ^  exp i +/9
m = ~ o o

Xz \
- * * ? ) ■  w

Therefore, the amplitude of double diffracted beam of spatial frequency 
1 ¡d and forming +1 st diffraction order in the far field is

E+i = Y J* {B )+ iC Jx{B) exp itf-TiL·!**) -  ~ J 2(B)

xexp i(2/9 — in fa /d2). (5)
Its irradiance is calculated as

I +1 =  >C2Jl(B) + —  [Jl(B) +Jl{B)] —ACJ0{B)J1{B) 

xsin (/9 —nAz/d2) —AGJ1{B)Ji sin (/9 —STtAz/d2)

~ Y J o(B )J2(B) cos(2/9 —Ante¡(P). (6)

I t  can be seen from eq. (6) tha t the time-dependent irradiance is composed 
of the three temporal frequencies described by terms with /9 = 0 ,1 /9 , 
and 2/9. After further simplifications the constitutive temporal harmonics 
are described as

I i ,  = -AC .J,(B) cos jj■+i

x sm
J 0(B) S in f^^ -) +  JAB) Sin(3rc^-) 

/9 -a rc  ta n ________ LJLZ---------------- '— t l

J 0{B) co s |? r-^ j + J 2(B) c o s ^ ^ j

(7)

i*/i =  — }f-Jo{B)J2{B) cos (2/9—4TtAz/d2).
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Similar calculations can be performed for the —l(I_ j)  and 0 (I0) diffrac- 
tions orders. The results are quoted below.

=  P m

J - .  =  -i-€Jl (B )^J l(B )+ J l(B )+ 2 J0(B )J3(B) cos

xsm

A 2

P -fare tan
Jo(B) sin|

[” 1?) sin(

' Xz\ 

?” * )

J 0(B) cos |
cos(’■1 )

I - 1  =  - ~ J 0{B)J2(B)co8{2p +  4C7iXzlĉ )f

and
A 2

n  = c 2J l ( B ) + ~ J l ( B ) ,

I j  =  2ACJ0(B )J1(B) sin {nXzjtf) cos p,

(8)

(9)

= Y J \ { B )  cos 2p.

The following properties of irradiance distributions in + 1 ,0 ,  and —1 
double diffraction orders can be deduced from eqs. (7) and (8):

1. The amplitudes of the bias and second temporal frequencies are 
independent of the separation distance z between the gratings. For 
z =  Md2IX{d2/X) is the so-called Talbot distance known from the theory 
of the self-imaging [11]), and z — (M +1/2)d2/A the second harmonics in 
all discussed diffraction orders are mutually in phase, M  is a positive 
integer including 0 (corresponding to the case of coincidence of phase and 
amplitude gratings).

2. For z =  Md2 ¡X the fundamental harmonics of the time-dependent 
irradiance in orders ±  1 have equal amplitudes

I'±l(* = Md2lX) =  + A C J1(B )[J0(B)+<72(B)]sin/9, (10)

but are mutually out of phase. For small values of B  it follows from the 
properties of Bessel functions tha t the condition z — Md2/X coincides 
with the condition of maximum amplitude of the fundamental harmonic 
of irradiance changes in the ± 1  diffraction orders. At the same time the 
fundamental harmonic in the zero order vanishes.

3. For z =  (M + l/2)d2/X the fundamental harmonic in ± 1  double 
diffraction orders have co-phasial and equal amplitudes

d2ix) =  - A G J 1( B ) [ J 0( B ) - J z( B ) ] cob p. (11)
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Simultaneously, the fundamental temporal component in 0 order attains 
the value

H ( 2  =  | i f +  ¿ j  <*!m) =  ± 2  cos yS, ( 12)

with the upper sign for M  even, and the lower one for M  odd. I t  is inter­
esting to note tha t the amplitude of fundamental harmonic in eq. (12) 
is larger than that described by eq. (10). Practical consequences of this 
fact will be discussed below.

2 . 1 .2 .  S in g le - fr e q u e n c y  s ta t io n a r y  g r a t in g  p la c e d  in  fr o n t o f  p r o g r e ss in g  p h a se  g r a tin g

Now let us discuss for comparison the case of identical amplitude transmit­
tance sinusoidal grating placed in front of progressing phase modulation. 
The complex amplitude of the light field in the plane of phase grating 
is given by

E '{x ,z)
- 1

L  A  1 x \
| c + - e x p (

- f a ? )
cos 2n — j

X J r  imJ m(B)exp iJm f  +^)J · (13)

By performing similar calculations to those presented above the following 
formulae for the harmonics of the time-dependent irradiance in the sym­
metrical +1 and —1 double diffraction orders are obtained

T 'O  __  T 'O  __  TO
1 + 1 — L- \  — ■L±li

I'll =  TA C JA B)[j I(B)+JI(B)+2J 0(B)J2(B) cos( 2 * ! ) ] /2

J 0( B ) - J 2(B)
x sin j/5 ± arctan £

J ,(B )+ J ,(B )  tan (* <r-

A1
I ' ÿ =  J„(B) J ,(B )cos 2/9. (14)

Moreover, it can be easily shown that the expressions for temporal harmo­
nics in the zero double diffraction order are identical with those valid 
for· the case of amplitude grating located behind the progressing phase 
grating.

The comparison of eq. (14) with eqs. (7) and (8) shows no important 
differences between the cases of the amplitude grating placed in front 
of or behind the phase modulation. For the characteristic separation

distances 2  =  Md2!K and 2  =  +  i j d 2/A discusssed above, the corres­
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ponding temporal harmonics in + 1 , — 1, and the 0 diffraction orders take 
the same values in both cases. The only differences can be seen in the 
expression for I fi±1 and I'J!i in the terms depicting the phase shift of the 
harmonics being proportional to the values of arctan. Moreover, it is 
interesting to note that the second temporal harmonics, in the case of 
amplitude grating placed in front of the phase one, has no phase shift 
proportional to the separation distance z.

2 .1 .3 .  D is c u s s io n

Let us discuss the practical implications of the properties of double diffrac­
tion field in the ± 1 and 0 orders developed above. They can be analysed, 
for example, from two points of view. The first one concerns the method 
of selective detection of the fundamental component of time-dependent 
irradiance in one of the first diffraction orders for noise-free measurement 
of the amplitude B  of phase modulation. In  the case of spatial coincidence 
of phase and amplitude modulations [10], knowing the amplitude grating 
parameters A  and C and measuring the diffraction efficiency of the fun­
damental temporal harmonic of irradiance, the amplitude B  can be esti­
mated. However, it follows from the analysis presented above th a t the 
same results are obtained for the separation distances z — Md2/A between 
the stationary amplitude grating and investigated phase modulation, 
irrespectively of the order of placing the two modulations on the optical 
axis. This fact is very important in practical investigations when the ampli­
tude grating cannot be located in the plane of progressing phase grating 
[9 ,12]. Due to our proposal no additional lens [12] used for imaging 
the phase modulation onto the amplitude grid is required. The exact 
fulfillment of the condition z =  Md2 /\  can be checked by observing the 
moment of vanishing of the fundamental temporal harmonic in the zero 
double diffraction order.

Moreover, even the higher accuracy of the method can be obtained by 
performing the measurements in the zero far field order. However, in this 
case the separation distance z should be (M+1I2)(PIA., see eq. (12). The 
fulfillment of the condition z =  (M  +1/2) d2/A is realized by maximizing 
the basic temporal harmonic in the zero order or by checking the in-phase 
relationship between basic harmonics in + 1  and —1 diffraction orders.

Additionally, if the technique using the detection of the difference 
in irradiances between - f l  and —1 orders [7] is applied to selectively 
filtered fundamental harmonics I p+1 and IL X, then for the planes z — Md2/A 
the detected irradiance difference

I t x{z =  M d ? ll ) - Ip+1(z = MtflX) = 2  AC J1{B)[J0{B )+ J2(B )]sinp ,
(15)

has the amplitude twice as high as in the case of single +1 or —1 diffraction
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order detection, eq. (10). This is due to the out-of-phase relationship 
between the harmonics I p+1 and l t 1 at those planes. I t  follows from the 
above discussion tha t the conditions for optimalization of temporal basic 
harmonics of irradiance changes in ± 1 and 0 double diffraction orders are 
basically different considering the separation distance between the progres­
sing phase grating and a stationary amplitude grid. The choice of the 
detection mode should be dictated by the actual experiment conditions.

The other field, where the above developed properties of double diffrac­
tion phenomenon find an application, is light modulation. The doubly 
diffracted —1, + 1 , and 0 order beams can be used for that purpose. The 
amplitudes gf fundamental or second temporal harmonics expressing the 
depth of modulation can be optimized for the particular values of para­
meters B , A ,  and C by making use of the equations developed above.

At the end of this chapter some additional remarks seem to be necessa­
ry. In  the foregoing analysis the pure amplitude transmittance single­
frequency grating was assumed. In practice, however, interference gratings 
produced photographically with high contrast values are always accom­
panied by higher harmonics due to the nonlinearities of film reiording 
process and the phase-relief effects. The relief-free nonlinearity effects 
provoke the consideration of a general amplitude transmittance grating 
instead of a sinusoidal one, this will be done in the following. Moreower, the 
arbitrary contrast single frequency amplitude modulations can be genera­
ted from binary gratings by spatial filtering process. On the other hand, the 
phase relief effects cause the complex amplitude transmittance of an 
interference type grating. They cannot be separated by a spatial filtering. 
Unless the index-matching immersion technique is used, the conditions 
derived for maximalization of temporal harmonics well be changed. The 
related problem has been recently studied in the case of near Fresnel 
diffraction field parameters of a complex transmittance grating [13]. The 
detailed considerations are, however, out of scope of this paper.

2.2. The case of general amplitude transmittance stationary grating

The transmittance of a general amplitude grating is expressed in the form 
of Fourier series

x
exp i2nn — , 

d
(16)

where d designates, as before, the grating period, and A n are Fourier 
coefficients describing the amplitudes of diffraction orders. Now, the 
calculations similar to the ones given in previous chapter have to be 
performed in order to find the time-dependent irradiance in double diffrac­
tion orders ±1  and 0.
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Below the results for the amplitude grating placed behind and in 
front of progressing phase modulation are listed up to the second temporal 
harmonic. I t  is necessary to say, however, that in the case of a general 
amplitude grating, different from the so-called Ronchi ruling (e.g. a square- 
wave grating with equal stripe and space width) higher temporal harmonics 
than 2 appears in diffraction orders. However, they are of less importance 
and we will not quote mathematical formulae describing them. The most 
practical case, e.g. the Ronchi ruling will be obtained as a special case 
of general transmittance grating. The formulae are as follows :

For the case of amplitude grating located at a distance z behind the 
phase grating the irradiance harmonics in the zero double diffraction order 
are

n = A ] J * +  2 J
fc=i

00

H  — sin +4 ^  A kJ kA k+1J k+1

X sin cos /5,

oo

n p — |  ^ A 0J 0A 2J 2 cos +  2 A \ J \ — 4 A kJ kA k+2J

(17)

x cos j4 (fc+ l)ra-^Jj cos 2p, 

and in ± 1  diffraction orders

i°±1 = a W + 2 a i j i +x+ 2 a i j i _.x,
k=l &=i

I± 1  =  T Z A qA^J^  j j 0 sin H-e/ 2  sin^/5 =F33T—¿-Jj

oo X z ~ \

^  2 A kA k+1  [ j k+1J k+2 sin ^p T(2fc +3)^-^rJ

- J , J , _ 1  sin x A: (2ifc —l)n  ,

I±I =  2 1^0A * J i p !  cos 20 - J a cos ^2p ±  8 ^ j  j

00 oo

~  y ^ j A kJ k- C O S  — y ,  A kA k+2J k~iJ,
*-1 \ d / iéi

(18 )
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/  M
x cos 12/3 4/ot-^-J — A kA k+2J k+1J k+z

' ' k^l

X cos |̂ 2/5 =F(4fc +  8)3t-^jJ, (18)

where, for simplicity, the abbreviation J k(B) =  J k was used. In the case 
of amplitude grating located in front of the phase modulation the far 
field formulae read:

— For the 0 order double diffraction beam
T 'O  _  TO
-*■0 -  xo> 
VP _  t P
X 0 —  X 0 5

T'2P _  T2P x0 — x0 )

— For the ±1  order beams
T'O _  jo

P T n

T 2 ^  A kA k+x | J k+iJ k + 2 sin l*/3 T  (2fc + 1 )^ — 1 
fc= l *- J

—̂  k<fk+l §in |V ±  (2fc +1) W j  J ,

l 2 fi1 = 2 ^ A 0A iJ 1j J 1 cos 2̂/3 ±  4a: ̂  J -  J  3 cos 2̂/3 =F 4 ? r j  j

I 'li = T 2A 0̂ i^ i |^ o S in  + J 2s in |

(19)

(20)

~  ¿U k-iJk+ i cos 2/3 -  2 1 ■^k-A-ic+zJk-\Jk+l
fc=1 fc=l

x cos|^2/3±4(fc+l)7r~j — v  A kJ k+lA k+2J k+3 cos j^2^T4(fc+l)ft-jyjj·

The case of Ronchi-type binary amplitude grating is obtained by in­
serting into eqs. (17)-(20) the condition A k = 0 for ~k even. Therefore, if 
compared to the single frequency amplitude grating the fundamental 
temporal harmonic of the irradiances in ±1 and 0 orders are expressed 
by the same expressions in these two cases, when noting the correspon­
dences A 0 =  0 , and A  = 2 A ±l. Thus, the whole discussion concerning 
the optimization of the fundamental harmonic amplitude given above 
for the sinusoidal grating is valid for the Ronchi ruling. These two types 
of amplitude gratings are most frequently used in practice.



80 K. P atorski

The influence of the separation distance z on the temporal harmonies 
in 0 and ±  1 diffraction orders in the case of general amplitude transmittan­
ce grating can be deduced from eqs. (17)-(20). Its character is very similar 
to the case of sinusoidal grating discussed in detail before.

— 0 double diffraction order:
The bias components in the cases of amplitude grating placed before or 
behind progressing phase modulation are the same and independent of 
the separation distance z. The fundamental component I 0 equals zero

at z — Md21 k (Talbot distances) and takes maximum values at z =

d2 ¡k with opposite signs for M  even and odd, respectively. Second temporal

harmonic assumes identical expressions for z = Md2 /k and z —

d2/k for all values of M.
— ± 1  double diffraction orders:

Here the bias components are also independent of the separation distance 
between the modulations. Fundamental harmonic I p+1 and I t i  are mutually 
out-of-phase a t the planes z — Md2/k and they change sign for M  even

and odd. At the planes z amplitudes of fundamental

temporal harmonics in orders + 1  and —1 are equal for a particular value 
of M  and their sign is opposite for M  even as compared to M  odd. The 
second time-dependent harmonic takes the same value for all separation 
distances z — Md2/k.

Because of the apealing similarity of basic characteristics, just quoted, 
and characteristics of the case of single-frequency amplitude grating with 
respect to the influence of the separation distance z , their discussion from 
the point of view of practical implications can be reffered to Chapter 1. 
However, mathematical expressions relevant to the case of amplitude 
grating of general transmittance are much more complex. Therefore, the 
use of sinusoidal or Ronchi-type binary rulings as stationary amplitude 
gratings is preferable.

For the sake of completeness, however, it is worthy to mention at the 
end of this Chapter about the additional possibilities the general amplitude 
transmittance gratings present over the single frequency gratings. They are 
characterized by higher diffraction orders and, therefore, their contri­
bution to higher double diffraction orders as well as to all temporal harmo­
nics in every double diffraction order is to be apprehended. In  the case 
discussed in the present work, e.g. the amplitude and phase modulations 
of the same spatial period higher diffraction orders require higher dif­
fraction beams from the progressing phase grating that are being absent 
in the case of small amplitudes B  of phase modulation. Therefore, they
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cannot be used for measurement of this amplitude. With respect to other 
application, e.g. light modulation, by the proper choice of B  the light 
modulation depth can be of appreciable value in higher double diffraction 
orders. Moreover, the selective detection of higher temporal harmonics in 
all diffraction beams can be tried.

The numerical studies of the problem of dephasing between positive 
and negative double diffraction orders of the same number and relative 
phase relation between increasing orders irradiance distribution have 
been recently made [9]. Total irradiance curves including all time harmonics 
were calculated. However, the inspection of the fundamental harmonic is 
sufficient for this purpose. By using an analytical approach presented in 
chapter 2 the expressions for I±N can be derived. In the case of Bonchi-type 
binary ruling most frequently used in practice they assume especially 
simple forms

JN—l^N  ”F (2.2V" —

+ Jn <7n +i s in ^T (2 iV

and

I±N =  iF2J.0j4.1 sinjV

Equations (21) and (22) relate to the cases of Bonchi ruling placed 
behind and in front of the progressive phase modulation, respectively. 
They enable a very simple interpretation of the dephasing problem.

If the modulation frequency is a deciding factor then the amplitude 
grating of a frequency n times higher than that of the phase grating should 
be used. In  such a case +1 double diffraction order comprises the w-th 
diffraction beam from the phase grating and +1 st beam from the amplitude 
one, and their harmonics. The phase of the w-th order beam changes n 
times faster with the phase modulation displacement than in the case of 
1 st order beam exploited when two gratings of the same spatial frequency 
are used. Therefore, the light modulation frequency will be n times higher 
than the frequency of progressive grating. The same conclusion based on 
the numerical analysis was reached in [9]. The analytical expressions for 
time-dependent irradiance in the far field of dual phase-amplitude gratings 
of unequal frequencies could be derived similarly to the expressions 
presented in foregoing chapters. For the both cases very important general 
remark is to be apprehended : when using higher number double diffraction

N*7N+1 Sin I ß “F^

7ß±N — -F2J.o-4.ij if.'

( 21 )

(22 )

6 — Optica Applicata XI/1
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orders the influence of the gratings separation distance z is w2 times pro­
portionally greater (n — the number of double diffraction order exploited) 
than when using ±1 diffraction orders [3,6].

3. Conclusions

General expressions for the time-dependent irradiance distributions in 0 
and —1 far field double diffraction orders of progressing phase modulation 
and stationary amplitude grating of the same spatial period and arbitrarily 
situated in space were developed and discussed. The gratings were assumed 
to be of unlimited extent and normally illuminated by a plane spatially 
coherent quasimonochromatic wavefront. The cases of single-frequency 
and general amplitude transmittance gratings were studied and compared. 
The influence of gratings separation distance on the amplitude and phase 
of the temporal harmonics of irradiance in diffraction orders was emphasi­
zed. I t  was found to be related to the so-called Talbot distance known 
from the theory of self-imaging. The properties of the far field double 
diffraction pattern change periodically with the increasing separation 
distance between phase and amplitude periodical modulations, with 
a period à? equal to the Talbot distance.

Practical implications of theoretical analysis were presented in the 
cases of application of double diffraction to determination of very small 
phase modulations and problems of light modulation. I t  has been shown 
that by the proper choice of gratings separation distance the practically 
exploited parameters of 0 and ± 1  diffraction beams can be optimized.
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Теория и применение двойной дифракции далёкого поля на системе, состо­
ящей из подвижной решётки с фазовой модуляцией и стационарной ампли­
тудной решётки

Приведены теоретические рассуждения переменных во времени распределений интенсивности 
в трёх наинизсших порядках дифракции далёкого дифракционного поля системы двух дифра­
кционных решёток: стационарной амплитудной и бегущей фазовой.

Выведены общие формулы для решёток, стоящих в любой очерёдности и на любом 
расстоянии относительно друг друга. Эти формулы позволяют оптимизировать амплитуду 
временных гармоний составляющих распределений интенсивности в порядках дифракции 
О и ±  1 посредством подбора межрешётчатого расстояния. Разница в условиях оптимизации 
связана с так называемым расстоянием Талбота. Обсуждены практические применения 
выведенных теоретических зависимостей.


