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Deformation of the time-space structure of radiation 
in the absorbing-amplifying laser systems

J a n  B a d z ia k

S. Kaliski Institute of Physics Plasma and Laser Microfusion, Warsaw, Poland

An analysis of deformation of the tim e and space distribution of radiation in th e  
absorbing-amplifying systems, based on numerical solutions of equations for both, 
intensity and eikonal of the light wave, as well as on the tim e and space compression 
function, has been performed, under the conditions of single-photon noncoherent 
interaction of the radiation with the matter. The characteristic properties of these 
deformations and the conditions of effective shaping of the distributions are determined. 
Some analogies, and as basic differences of the changes in tim e and space distributions^ 
as well as the existence of a coupling between these distributions in the case of non- 
stationary interaction are indicated. It has. been pointed out that under the condition,, 
typical of a number of experiments, the nonlinear interaction of the radiation with  
the absorbing-amplifying matter may lead to essential non-uniformity of the tim e-space 
structure of the radiation.

1. Introduction

The development of both the theoretical and experimental investigations of 
the laser absorbing-amplifying systems dates back to the year 1966, when 
for the first time picosecond light pulse generation was achieved in a laser 
that, beside the amplifying medium; contains a nonlinear single-photon absor­
bent [1, 2]. The research works carried out by many authors on the systems 
of this kind were aimed first of all at both determination of mechanisms and 
finding the optimum conditions of ultra-short pulses in laser with nonlinear 
absorbent. The extended bibliography oh this subject is, for instance, given 
in [3-6]. The examinations of generation in two-component absorbing-amplifying 
systems were made in parallel with the works on pulse amplification in these 
types of systems. These works, on the one hand, allowed to recognize more 
generally the mechanisms of ultrashort pulse formation and, on the other hand, 
showed other possibilities of applications of the systems with nonlinear absor­
bents. The papers [7-14], in which the changes in time and energy characteristics 
of pulses in amplifying systems of the type considered were/ analysed and exa­
mined, should be mentioned. A number of important regularities concering 
these changes have been determined, and some aspects of practical applica­
bility of the systems discussed. In  the course of last years the examinations 
referring to the two-component dye systems enabling, among others, the gener­
ation of subpicosecond pulses, have been developed particularly intensively, 
e.g. [15-17].
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The absorbing-amplifying laser systems are at present exploited in many 
fields of physics and technology. The wide applicability of the radiation amplified 
or generated in the systems with nonlinear absorbents necessitates the detailed 
recognition of the processes accompanying the radiation propagation in these 
kinds of systems. The recognition of these processes provides information, 
sometimes inaccessible in directed measurements, about the time-space structure 
of radiation, which may determine to a high degree the course of the physical 
phenomena occurring during the interaction 2 * of radiation with a variety of 
objects, on the one hand, and creates the possibility of programming the para­
meters of radiation to be fitted to definite practical purposes, on the other. 
A s. already mentioned, the theoretical analyses concerning the problem of 
generation and amplification of the radiation in the absorbing-amplifying 
systems aimed first of all at determining the influence of the nonlinear absorption 
on the time characteristics of radiation. For this -  among others -  reason they 
were based on one-dimensional models ignoring the lac t that there exist a trans­
versal structure of radiation and a coupling between the time and space distri­
bution of the field in nonlinear medium. In  this paper, starting with nonlinear 
wave equation in paraxial approximation and with kinetic equations for both 
amplification factor and absorption coefficient, the changes in time and space 
distributions of radiation in absorbing-amplifying systems have been analysed 
under the conditions of single-photon noncoherent interaction of radiation 
with matter. Both the characteristic properties of this distribution and basic 
regularities concerning the mutual coupling between these distributions in the 
systems considered have been determined. The analysis was aided with results 
of numerical solutions of two-dimensional equations of propagation and with 
function of time and space compression.

2 . Basic equations and relations

The change in time and space distributions of radiation in an isotropic and 
uniform absorbing-amplifying* system will be described by the equations for 
intensity I  and eikonal W, which in the system of axial symmetry have the 
forms [18]:

dI .  £
dz V dt

№  1  dW

dz V t
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where z, r — variables in the directions parallel and perpendicular to the

* I. e., in the system  containing two kinds of independent active centra: 
centra and radiation amplifying centra (with population inversion).

absorbing
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xadiation propagation direction, respectively, A± , nQ, dn' — real

and, correspondingly, linear and nonlinear parts of refractive index in the 
medium, v = c/n0 — light velocity in the medium, Tc = 2 tt/A, A — wavelength, 
J l(I) — amplification function of the system. The equations (1) may be easily 
obtained from the parabolic equation* for complex slow-varying amplitude 
of electric field E, by substituting

E{t, z, r) =  A {t, z , r)eik^ Uz’r\  1 =  aA2

where a — constant depending on the choice of units.
In  the case of noncoherent, single-photon interaction of radiation K (I)  

has the form

K(I) = & ( ! ) - & ( ! ) - ( > ,  (2)
where ft19 /?2 > 0  — coefficients of amplification and absorption, respectively, 
described by the kinetic equation [8,18] :

=  0’ i = 1’2’ <3>

T { — relaxation time for difference in level population, ai — active cross- 
-section, — amplification (absorption) coefficient of the system in equili­
brium state, 8{ — parameter depending on the working scheme of the active 
centra (in a two-level system = 2); q — linear loss coefficient. The index 
t  — 1 concerns the amplifying centra, while i =  2 — the absorbing ones.

Let us consider two practically most interesting limiting cases: the case 
T 2 4  tp 4  T, (rp — the PWÏÏM of the time distribution of the radiation in­
tensity a t the distance r from the beam axis) in which, according to (2) and

z
(3) and after introduction of the variable r =  t -----

v

K  = aexp I  (r',r)dr
x

- Qi (4)

where a =  =  fix(t =  — oo) — amplification factor for weak signals, x =  f?2
=  & (t = —oo) — absorption coefficient for weak signals, ef = ll8 1o1 — sa­

turation energy density, If =  (*2<raT2)-1 — absorption saturation intensity; 
and the case rp 4  T lf T 2, in which

K  =  aexp £ — i- J I ( r ',  r)dr' j — xexp £ — —■ J I ( t', r)dr' j -  q, (5)

where e\
1

* For the conditions of applicability of parabolic equation for E  and by the same means 
the* equations (1), see, for instance, [18, 19].
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The characteristic properties of changes in the time and space distributions 
of radiation occurring in the system considered due to nonlinear resonance 
interaction, dominating at dn' =  0 and small beam divergence, will· be defined 
by taking advantage of numerical solutions of equations (1) as well as both 
the time compression function [18, 20]: T  =  —llr p -drpldz and the space com­
pression function [18,20]: 8 =  —1 \rp -drp\dz (rp — half-width of the space 
distribution of radiation intensity a t the moment r). These functions determine 
the relative rate of changes in the respective widths of time and space radiation 
intensity distributions in the medium. In accordance with [18, 20], for W m const 
we have

T  =  A  jjqZ » , Th) - K  I h, T|)]  +  A  [ * ( I 4, T») - l e g  h ,  r 2) ] ,  (6)

where I h = I{ r h,r)  — intensity a t the maximum of the time distribution, 
t 2 — points corresponding to the maximum of time distribution andlhl

to the half-heights of its face and back fronts, respectively, dx, d2 >  0 — incli­
nation coefficients for slopes of the time distribution determined by the de-
pendence

e i +  1 Ik
St *l(2) ( —) 1̂(2) Tp

and

8  = (7)

where I m =  I ( r , r  =  0) — intensity a t the maximum of spatial distribution, 
y >  0 — inclination coefficient of spatial distribution slopes defined by the 
formula

8±  - 1  I m

8 r  rp  V

3. Deformation of the time distribution of radiation

In  the case T 2 rp < T x, in accordance with (4) and (6), the time compression 
function for the case considered may be written in the form

T  adj {exp [ -  bBA(r)] -  exp [ -  bx ÆA(r)]|

'+ ' \  «<MexP [ - b B h{r)] -  exp [ - b 2Bh{r)]}

[ ôx + ô2 Bh(r)

* [ i +£*(*·)] [ 2 ( * · ) ] ’2 (8)
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where Bh =  IA/If, b J f(r , r)dr,

H r, r)

h

In the expression (8) the first two components of the sum- describe the 
changes in time distribution of radiation (the lengths of the face and back pulse 
fronts) evoked by the nonlinear amplification, while the third component 
represents the nonlinear absorption. I t  may be seen tha t both the rate and 
the direction of the changes in the pulse length caused by nonlinear amplifi­
cation depends on the pulse shape, and tha t not only the shape of the factor 
is essential, as was pointed out in earlier works, for instance, in [8], but also 
the pulse symmetry. In  the case when the face front is much sharper than the 
back one (<5j <5a) the nonlinear amplification will lead to the pulse compression.
In  the opposite case we will have to do with its elongation. The compression 
rate in the amplifying medium is the greater the more asymmetric the pulse, 
i.e. the smaller the ratio ôxlô2. In  the limiting case =  0, for x =  0,. the 
following expression may be obtained from (8):

I  =  ^  a<5s[ l — exp( ~ b 2Bh)], (9)

from which it follows tha t the compression rate for asymmetric pulse with 
sharp face front increases with the increase of its energy density. If this density 
exceeds several times e\ the second component of the sum in (9) is considerably

less than 1 and practically T  m — ad2. This is the maximal rate of compression
At

in an amplifying medium. Taking advantage of the formula obtained and the 
definition of the function T  the following approximate expression may be 
obtained for the pulse length after its passing the distance l in the amplifying 
medium

rp ^  r j  exp |  ~ a<3zj, (10)

where 6 — average inclination coefficient of the pulse slope. Since usually <3~1, 
the compression of the pulse in the amplifying medium at its optimal (highly 
asymmetric) shape may be considerable.

Nonlinear quasi-stationary absorption, as it follows from (8), leads to com­
pression of pulse of arbitrary time shape. The latter influences only the com­
pression rate which is the higher the milder are slopes of the pulse, being 
weakly dependent on pulse symmetry (<$i +  <$2 ^  const at the change in pulse 
symmetry). The changes in the pulse length evoked by absorption occur most 
quickly a t the top intensity Bhm =  ^2, while the maximum compression rate
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amounts to T  = (d1 + <32)»/2(1 -f-|/2)a, being three times less than the maximal 
rate of compression in the amplifier with a equal to «.

Some of the regularities discussed above and concerning the change of tho 
pulse length in the two-component system are illustrated in fig. 1. The curve

Fig. l.a . The time compression 
function for an absorbing (1) and  
amplifying (2) medium, b. Time com­
pression function for the absorbing- 
amplifying system  in the case of 
quasi-stationary interaction w ith the 
absorbent. 6 =  2, 6X =  2, 62 =  1 1

1 in fig. la  presents the dependence of the time compression function upon 
the top pulse intensity for single-photon absorbent, while the curve 2 shows 
an analogical dependence for the amplifier in the case of pulse with exponential 
slopes for 6 =  1. Fig. lb  illustrates the influence of symmetry of the pulse 
on the rate of its length change in a two-component system with a =  x. The 
symmetric pulse with exponential back fronts (<5X =  <32), the asymmetric pulse 
with a jumping face front and exponential back front = 0 )  and asymmetric 
pulse with exponential face and jumping back fronts (<52 =  0) are illustrated 
in the graphs. I t  may be seen that the change in the pulse symmetry leads 
not only to quantitative but also to qualitative changes in the time evolution 
of the radiation distribution in the system. For <5X =  0 or <3X =  <S2 the com­
pression of the pulse occurs for arbitrary values Bh while for <S2 =  0, a pulse 
elongation occurs in the region of small intensities and the pulse compression 
in the region of great intensities.

Characteristic properties of pulse shape changes in the absorbing-amplifying 
system under the conditions of quasi-stationary interaction with the absorbent 
are illustrated in fig. 2. The figure 2a presents the dependence of the amplifying 
function upon the local time r for a <  « +  q, while the fig. 2b shows the direction 
of changes in radiation intensity a t different moments r. I t  may be easily pointed 
out [13], that in a system with threshold amplification the pulse compression
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may occur independently of its shape at the system input, provided that pro­
pagation path is sufficiently long. If a >  x+  q this shape is the more essential 
the greater the ratio a lx.

Fig. 2. a. The dependence of the amplifying 
function for the absorbing-amplifying sys­
tem upon the local tim e at quasi-stationary 
interaction with the absorbent and 
x >  a — q. b. The direction of changes 
in radiation intensity

As it follows from eq. (8) the time compression function, in general, depends 
on r. This means tha t for spatial radiation distribution, different from rectan­
gular, the rate of changes of the intensity distribution a t different points r of 
the beam cross-section is different. In  figure-3 the dependence T(r) is shown

Fig. 3. Relative rate of width changes in the tim e 
distribution of radiation intensity in an absorbent 
as a function of the distance from the beam axis

for single-photon absorbent in the case of Gaussian distribution of R(r) and 
two top intensity values on the beam axis R ^  — 1 and Rhm =  5. The dependence 
T{r) for these two values has a qualitatively different course. For the value 
Rhm less than optimal (equal to ^2) the maximal rate of time distribution com­
pression occurs on the beam axis. For Rhm >  V% the dependence T(r) is non­
monotonic and the compression rate maximum appears on the slope of the 
space distribution of radiation. The minimum of the function T(r) on the beam
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axis deepens with the increase of Rhm, its maximum value being independent 
of R hm. The existence of the dependence T(r) leads to some time-space hetero­
geneity in the radiation structure, i.e. the intensity distribution at the output 
of the system may be unrepresentable in the form: I[ r ,r )  = af(r)g{r). I t  
results also in appearence of the dependence of time changes on the radiation 
power distribution (intensity integrated with respect to beam cross-section) 
upon its spatial distribution.

Now, let us consider the case rp <4 T X1 T 2. The analysis of the changes 
in the time distribution of radiation in this case may be carried out analogously 
to what was done above by using the time compression function. We shall 
restrict our consideration to an indication of only some features of the distri­
bution deformation under the conditions of nonstationary interaction of radiation 
with the two-component medium.

The function T  for absorbent may be obtained from expression (8) by omitting 
in the sum its last term and a respective substitution of parameters (a for x, 
R h for I h, and so on). From this expression it follows, among others, th a t in 
the  case of a pulse with face front much sharper than its back front (dt <32) 
the nonstationary single-photon absorption leads to pulse elongation The

maximum rate of elongation occurring at ^  =  0 for e f> ef, is equal to -  <52x.
2

For > dz the nonstationary absorption leacls always to the pulse compression, 
whereby for e -* 0 and e-> oo the compression rate tends to 0.

For nonstationary radiation-absorbent interaction the change in the pulse 
length is a resultant of two opposite processes: shortening of the face front 
and back elongation of the front of the pulse, Applying of an absorbent of 
long (with respect to rp) relaxation tim e is usually less effective than tha t for 
absorbent of short relaxation time. In  practice, it is not this much the dimini­
shing of the total pulse length, which is often desirable, but rather the shortening 
of its face front (for instance, to achieve a quicker rise of the pulse laser in 
the amplifiers). In  this case an absorbent of long relaxation time is more effective, 
since it allows to obtain the required shortening of the front a t considerable 
less losses of power than in the case of rp t> T z. The expression (8) allows to 
determine the optimal conditions for the face front compression. I t  implies 
th a t the rate of shortening of the front is the greatest if the energy density

of this front eh = T  H r)dt, satisfies the condition
— OO

During the propagation the pulse shape suffers from alternations and by the 
same means the ratio is also changed. Since the optimal value of eh is a low- 
- varying function of this ratio, it may be pointed out tha t for a broad class
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of the face front shapes it lies within interval:

e2 <  ehP <  2ef,
whereby for mild fronts it is positioned close to the lower limit of this interval, 
while for the sharp fronts -  to the upper limit (for instance, for the exponential 
front e%p =  2efln2). The condition given above determines with the sufficient 
accuracy the energy density of the face front a t which the shortening rate of 
this front is the highest.

The ratios a/(« +  g) and «f/ef decide predominantly about the properties 
of this system in the case of nonstationary interaction. For the given values 
of these ratios the character of changes in the time distribution of radiation is 
determined by its shape and the energy density. The character of the influence 
of the energy density on the evolution of time distribution of the intensity I  
and power P  of radiation in the system is illustrated by the graphs in fig. 4,

Fig. 4. Time distribution of intensities (1, 2, 3) and power (4) of radiation at the output 
of an absorbing-amplifying system  in the case of the nonstationary interaction with the 
absorbent.
a = 0.12 cm- *, « = 0.2 cm-1, e = 0.02 cm-1, r0 = 0.5 cm, 2 0 = 10’ cm, e®/e| =  4 10*. a. <4 1 ~ r  *» 0,
„ 6 9 8 0 « ,  „ _ 3 6
2 - r  =  ^ r„ 3 -  r = - r 0. b. e2 < em <4 j , 1 - r  = 0, 2 - r  = - r „  3 -  r =  ̂ r,

obtained from numerical solutions of equations (1) for <5n' = 0 ,  B(r, r, z =  zQ) 
=  F jmexp( — t 2/ tq — r2/rjj), P { r ,r ,z  = z0) =r*/2z0. Fig. 4a concerns the case 

e 2 ^  em < en  and fig. 4b the case e82 < £°m ^  ef. The curves 1, 2, 3 present the 
intensity distribution at the output of the two-component medium of the length 
l = 80 cm, while the curves 4 show the output distribution of the radiation 
power. The broken line gives the input distribution. The distributions 1, 4 
and the input distribution are normed to the same value. I t  may be seen that 
in the case when radiation energy density is comparable with the energy density 
of the amplification saturation and it is much greater than the energy density 
of the absorbtion saturation, the maximum of the time distribution is shifted 
in the direction of diminishing values r  (maximum of distribution propagates 
in the medium with the superlight velocity), the shift being the greatest on the 4

4 — Optica Applicata XI/3
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beam axis. This results from the dominating influence of the amplification 
saturation on the radiation propagation. In  the case shown in Fig. 4b we observe 
an opposite situation -  the maxima of distribution are shifted to the back 
front of the input distribution (and propagate with the sublight velocity), 
while the greatest shift occurs on the slope of the space distribution of radiation. 
In  this case the absorption saturation effects decide about the character of 
the radiation evolution. In  both the cases shown in Figs. 4a and 4b the nonlinear 
interaction of radiation with the medium leads to some splitting of the initially 
uniform time-space structure of radiation. Nonuniformity of this structure 
will be the less the closer is the input space distribution of “radiation to rectan­
gular form. The input space distribution of radiation influences essentially 
also the time distribution of the radiation power a t the system output. In  the 
case of quasi-rectangular distribution B°(r) the output power distribution will 
be close to the intensity distribution on the beam axis (curves 1 in fig. 4) and 
thus may differ considerably from the power distribution for Gaussian distri­
bution of B°(r).

4. Deformations of space distribution of radiation

The analysis of the space distribution of radiation due to resonance interaction 
with the two-component medium will begin — as previously — with consi­
dering the case T 2 <4 tp <^TX. In  accordance with (4) and (7) the space com­
pression function in this case has the form*

y_x jm W  (11>
2 [X +  ii„(T)][2 +  B „(T )]’

where Bm{r) = I m(r)/I | — relative intensity on the beam axis at the moment 
r ,  % =  Ij/ef. The first term of the sum (11) describes the changes in the space 
distribution of radiation occurring at the moment r  due to the interaction with 
the absorbing centra. Nonlinear amplification leads, as may be seen, to a broade­
ning of spatial distribution, while the nonlinear absorption -  to its compression.

In the case of quasi-Tstationary interaction the function of space compression 
for the absorbent has the form analogous to the time compression function 
(comp. (8)). Hence, all the conclusions obtained in the Section 3 and concerning 
the changes in the time distribution of radiation for the case a =  0 or e ef 
are valid also for the changes in spatial distribution.

S = 2  Q ‘6XP
f  Æ m (T ')d r 'J - e x p J B„

* For the sake of sim plicity it has been assumed that /(r ,  r =  0) <=» f ( r ,  r  =  rp ).
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There is no symmetry in the changes in both time and space distribution 
of radiation in the amplifying medium due to nonstationarity of interaction. 
The rate of changes in the space distribution of intensity a t the moment r 
depends upon the energy density of radiation which passed through the given 
point in the medium till the moment r. By virtue of (11) it may be shown that 
the rate of the instantaneous intensity broadening is the greatest when

em(T) =  2efln2, (12)
T

where em(r) = f  I m(r')dr'. For sm -> 0 and em -> oo the rate of broadening

tends to zero. From (12) it follows in particular that the broadening of space 
distribution intensity in the time maximum of the pulse occurs most quickly 
when the top intensity on the beam axis I hm fulfils the condition

I hm = —  In2, (13)
Tf

Th
where rf  = f  f(r)d r  — effective length of the face front of the pulse. From

— OO
the above it follows that at the fixed value of I hm the changes in the space 
distribution of intensity a t the moment r  depend on the time shape of the pulse.

In  the two-component system the changes in space distribution of radiation 
result from two opposite processes, i.e. compression due to nonlinear absorption, 
and broadening due to nonlinear amplification. This leads to a complex de­
pendence of the kind of the distribution deformation upon the parameters 
of both the system and pulse. The expression (11) allows to reveal the features 
of these deformation and to determine the basic regularities concerning the 
influence of both system and pulse parameters on the character of the changes 
occurring. The figure 5 presents the dependence of the space compression

Fig. 5. Relative rate of changes in the 
width of the space distribution of ra­
diation intensity at the time m axim ­
um of the pulse in the case of quasi- 
stationary interaction with the absor­
bent in two-component system

function at the time maximum of the pulse Sh upon the. top intensity on the 
beam axis for different values of the parameters b =rj1rf  and a =  x. For 6 = 0 ,
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which corresponds to the lack of amplification saturation, or a = 0 ,  the space 
distribution of intensity in the time maximum of the pulse suffers from com­
pression for arbitrary Bhm, and the maximum rate of compression occurs at 
Bhm — j/2. The increase of the parameter b, thus, for instance, the increase 
of the face front of the pulse, leads to the occurrence of a decompression region 
in the range of great values of Bhm. After a definite value of b is exceeded, 
the situation changes essentially; the compression of the distribiltion occurs 
in the range of great values of Bhm1 while its broadening a t small values of Bhm.

The dependence of the function 8  upon time for a pulse of Gaussian time 
distribution: f(r)  =  exp( — r2/^) (describing the rate of changes in the width 
of space distribution at different points r of the pulse) is shown in fig. 6. For 
Bhm =  const, and b = 0 the function 8(r) is symmetric and positive, while 
the maximum rate of distribution compression occurs a t the time maximum 
of the pulse*. The decompression region resulting from the increase of the 
parameter b appears first on the back front of the pulse and next also on its 
face front. For sufficiently great values of & (in the region of strong saturation 
of amplification) the broadening of the distribution occurs only in a part of 
the face front pulse, while in the surrounding of its maximum and on the back 
front the compression takes place. The influence of intensity Bhm on the de­
pendence 8(r) for b = const is illustrated in fig. 6b. I t  may be seen that the

Fig. 6. Relative rate of change in the width of the space distribution of radiation intensity 
at different moments r in the case of quasi-stationary interaction with the absorbent in the 
two-com ponent system

* For Bhm <  ^2. If Bhm >  the maximum rate of compression appears sym m etrically  
on the face and bock fronts of the pulse.
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change of Bhm may lead to substantial changes in the character of the spatial 
distribution deformation occurring in the system.

The influence of the third of parameters deciding about the character of 
the space distribution changes, namely of the ratio x/a is quite obvious. The 
increase of this ratio leads to an increase of the compression region both on 
the axis Rhm and r ,  while its diminishing results in an increase of the decom­
pression region.

The numerical solutions of equations (1), with dn' =  0 and the function 
K  given by the formula (4), illustrating the change in the width of space in­
tensity distribution in the time maximum of the pulse rh and the spatial distri­
bution of the energy density re for two values of parameter h' =  r]iT0, are 
shown in fig. 7. The input distributions are accepted to be the same as those

Fig. 7. Evolution of the space intensity distribution width (a) and the energy density (b) 
of radiation in the absorbing-amplifying system in the case of quasi-stationary interaction 
with the absorbent.
a = 0.12 cm -1, x = 0.2 cm-1, e =  0.02 cm -1, r, = 0.5 cm, z, =  10* cm. 1 - 6  = 0.1, 2 - 6  =  0.001

in fig. 4. The curve 1 concerns the case b = 0.1, and the curves 2 correspond 
to b = 0.001. At the initial stage of amplification, when the pulse energy is 
still relatively small, the absorption saturation effect, leading to the com­
pression distribution, decides about the changes in the space distribution. Alter 
the pulse achieves a sufficiently high power and energy, the effect of amplifi­
cation saturation begins to dominate causing the broadening of the distri­
bution. This is manifested in a nonmonotonic character of the respective curves. 
The shapes of intensity distributions and radiation energy density a t the 
output of a two-component medium (1 = 80 cm), as compared to the input 
distribution (broken line), are shown in fig. 8. The curves 1, 2, 3 illustrate the 
intensity distributions on the face pulse front, in the maximum surrounding
and in the back pulse front, respectively, while the curve 4 represents the

00

energy density e(r) =  /  I{r ,r)d r. In  the case b = 0.1 (fig. 8a), the distri-
— 00
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bution width is the least on the fac^ front and the greatest in the back front 
of the pulse. A distribution minimum appearing simultaneously on the back 
front results from differences in the rate of shifting the time maximum of radia-

Fig. 8. The space distribution of intensity (1, 2, 3) and energy density (4) of the radiation 
at the output of the absorbing-amplifying system  in the case of quasi-stationary interaction  
with the absorbent.
1 — on the face front, 2 — at the time maximum of the pulse, 3 — on the back front, a -  b = 0.1, b -  b = 0.001. 
Parameters as indicated in fig. 7

tion at different points r. In  the case of b = 0.001, in which the nonlinear 
absorption decides about the changes in distribution, the compression of space 
distribution on the face and back fronts of the pulse is greater than a t the 
surrounding of its time maximum.

The function of space compression for an absorbent in the case of nonsta- 
tionary interaction (rp <4 T x, T 2) has the form analogous to tha t in the amplifying 
medium; therefore in the formula for 8  only the quantities a and e\ should 
be replaced by x and el, respectively. Hence, it follows, among others, tha t 
the nonstationary absorption leads to space distribution compression of radiation 
intensity and th a t the rate of compression is maximal a t em(r) =  2e\In2. 
In  the two-component system the character of changes in space structure of 
radiation depends on the values of the ratios x/a and e\¡e\. The influence of 
the last magnitude is illustrated in fig. 9, which represents the dependence of

Fig. 9. Function of space compression 
for an absorbing-amplifying system  in 
the case of nonstationary interaction  
with the absorbent.

l - «| = io-» ef. 2 - 4  =  o.i«;. 3 - 4  = 2 4
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the function 8 upon the normed radiation energy density on the beam axis 
a t the moment r. The graphs in this figure may be interpreted in two ways: 
as dependence of the function 8 at the moment r = r' upon the energy density 
of radiation on the beam axis, which to the moment r passed the given point 
of the medium, or as the qualitative dependence of the function 8  upon the 
time r , since the increase of em may be treated as being equivalent to the in­
crease of r. If e\ 4  ef (curve 1) the space distribution of intensity is comprimed 
in arbitrary moments for the pulse energy density em(r = oo) comparable to e* · 
An increase in the ratio ef/ef leads to the appearence of the decompression 
region on the energy density axis in the range of the, values em comparable 
with ef, which may result in broadening of the intensity distribution on the 
back front of the pulse of sufficiently high energy. For e® >  e® (curve 3) the 
compression occurs for great values of em (and thus on the back front of the 
pulse), while the decompression takes place for small values of em (and thus 
on the face front of the pulse). The change of the ratio ef/ef may thus lead to 
strong changes in the character of space distribution in the medium.

The influence of the energy density on the space distribution of radiation 
at the output of the two-component medium (l = 80 cm) is illustrated in fig. 10

a

Fig. 10. Space distribution of intensity (1, 2, 3) and energy density (4) of radiation at the 
output of an absorbing-amplifying system in the case of nonstationary interaction with the 
absorbent.
1 -  on the iace front, 2 -  at the point of time maximum, 2 -  on the back front, a. < em <el ’ b’ ®2< em  ^ *1 
Parameters as indicated in fig. 4

for nonstationary case. The curve notations are the same as in fig. 8 and the 
input parameters of radiation are the same as those in fig. 4 Fig. 10a concerns 
the case e\ < e°m 4  b\. In  the first case the direction of changes in the intensity 
distribution on the face and back fronts of the pulse is different -  on the face 
front the compression and on the back front the decompression of the distri­
bution are observed. The energy density distribution suffers from considerable 
broadening. In  the second case the compression of the intensity distribution 
occurs a t arbitrary moments r and the width of the energy density distribution
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is less than that a t the input. The evolution of the width of the I h(r) and e(r) 
distributions in both the cases mentioned, as well as in the case when e°m < 4 ,  
is illustrated in fig. 11. The graphs presented confirm some conclusions drawn 
from the analysis of the function of space compression.

Fig. 11. Evolution of space intensity distribution width (a) and energy density (b) of radiation 
in an absorbing-amplifying system  in the case of nonstationary interaction with the absorbent. 
1 -  « 2  < %l < ef. 2 -  e | <  «  e®, 3 -  Parameters as indicated in fig. 4

5. Recapitulation

In  this work an analysis of the deformation of the time and space radiation 
distributions in the absorbing-amplifying laser system, made under the conditions 
of single-photon, noncoherent interaction of the radiation with the medium 
has been presented. The properties of these deformations have been determined 
and the conditions under which these deformations are the greatest -  defined. 
The analysis carried out has indicated the appearence of both some analogies 
and essential differences of the changes in time and space distributions, as 
well as the existence of correlation between those distributions in the case 
of nonstationary interaction. The appearence of these correlation is one of the 
essential factors limiting the applicability of the stationary models to the analysis 
of changes in space distribution of radiation in the medium, as well as the 
applicability of the one-dimensional models to the analysis of time and energy 
changes in the characteristics of radiation in two-component laser system. 
The analysis has also pointed out tha t under conditions typical of a number 
of experiments the nonlinear resonance interaction of the radiation with the 
absorbing-amplifying medium may lead to an essential time-space nonunifor­
mity of the radiation structure, i.e. the radiation intensity distribution after 
passage through the medium cannot be represented in the form I(r , t)
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=  af(t)g(r). This restricts, among others, the applicability of the concept of 
transversal modes to the two-component pulse laser, in particular to the laser 
with self-synchronization of modes, as well as to the traditional (stationary) 
models and methods of focussing or self-focussing of the pulsed radiation 
realized in systems of this kind. To obtain accurate quantitative information 
about the distributions of this radiation in the surrounding of focus it is necessary 
to consider the focussing system together with the radiation generating system. 
The analysis carried out in this work indicates also tha t an effective shaping 
refers not only to the time profile of the pulse, as shown in the earlier works, 
but also to the space profile and, in particular, to the formation of the distri­
butions of the radiation energy density of the “supergaussian” profile which 
is desired in a number of application of the high power laser radiation.
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Деформации временно-пространственной структуры излучения 
в лазерных абсорбционно-усиливающих системах

Используя численные решения уравнений для интенсивности и эйконала световой волны, а также 
функции временной и пространственной компрессии, был произведён анализ деформации време­
нного и пространственного распределения излучения в абсорбционно-усиливающих системах в усло­
виях однофотонного некогерентного воздействия излучения со средой. Определены характерные
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свойства этих деформаций, а также условия эффективного формирования распределений. В статье 
указывается на наличие как некоторых аналогий, так и основных различий в изменениях временного 
и пространственного распределений, а также на существоввание связи между этими распределениями 
в случае нестационарного воздействия. Доказано, что в типичных условиях для ряда экспериментов 
нелинейное воздействие излучения с абсорбционно-усиливающей средой может вести к существе­
нной неоднородности временно-пространственной структуры излучения.


