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Correction of holographic concave gratings

Reiner Guther

Central Institute for Optics and Spectroscopy Academy of Sciences of the GDR, 1199
Berlin-Adlershof, Rudower Chaussee 5

The dimensioning of holographic gratings requires the following steps: selection of
the grating type precalculation and automatic correction. The automatic correction
should be based on a ray-tracing procedure in which we assume the gratings to be
composed of infinitesimal plane gratings. We describe the diffraction of an incident
ray by a local invariant vector formulation. As a merit function we use the Gauss
moments of the spot diagrams. Examples of optimization are given for polychromators
and monochromators including the related precalculations.

1. Introduction

The development of corrected holographic gratings requires the optimization
of the latters. After selecting the grating type suitable for our problem, this
optimization may be carried out in two steps: precalculation and automatic
correction. The precalculation involves simple demands made upon the analy-
tical formulae of aberration, which can be met at a low expense by
using a small computer. Examples presented in [1] are given in Appendixes
1 and 2.

This precalculation is followed by an automatic optimization. A possible
method is that of ray-tracing with the use of a merit function. This method
was first applied to Seya-Namioka monochromators, as reported [2], where
the ray tracing is carried out by varying the optical path. We use the diffraction
by a local plane grating [7], which seems to be more convenient for systems
containing gratings and for gratings produced by deformed spherical wave-
fronts. Some examples for polychromators and monochromators will be given.

2. Derivation of the formulae for ray-tracing

We use the notation as well as the coordinate system as given in [3], which
are explained by fig. 1. 0 and D denote the point sources of laser light of the
wavelength A0, which produces the iuterference pattern for preparing the
grooves on the surface of the grating support, i is a point source emitting
polychromatic light or a slit, and B is the image of A for the given wavelength A
The distances of the points from the centre of the grating, 8, are IA,

and ID. The inplane angles (say a2) and the offplane angles (say a0) are defined
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so that the three Cartesian coordinates of a point, say, the point A, are written
in the form

(XA, Ya,Za) = (IAco8ajCOSa0, 1AsinajSina0, IAsina0).

Fig. 1. Configuration for the preparation
of holographic gratings by means 'hf
tWo light sources 0 and D, and for the
reconstruction by using a point source A

The angles associated with B, C, and D are denoted by /?,y, and <} respecti-
vely. While the grating is plotted, a local plane interference pattern appears
at the point M (fig. 2) because infinitesimal plane waves arrive at M along

Fig. 2. Local Cartesian coordinate system
generated by the local interference fringes

D to M.

The spatial normal vector of the local system of interference fringes is
given by nint = eD—ec. The unit normal vector ng at the point M on the
support surface can be calculated in the usual manner. Now, the normalization
of tig x yields the unit vector nt parallel to the grooves of the grating
(fig. 2). The unit vector nz perpendicular to the grooves can be constructed
by normalizing w, x ng. The grating constant is given by

J= conwtotwj. 1)

A ray emerging from the point A with a unit direction vector eE pierces
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the grating at the point M. The diffracted ray, characterized by the unit di-
rection vector eR, can be then obtained, provided that (cf. [4], p. 450):

— the component of eR, parallel to n+ has to be calculated by using the
grating equation,

— the component of eR, parallel to nHhas to be calculated by using the
law of reflection,

— the component of eR parallel to ng has to be calculated by using
ile*]| =1.

This means that

where
rL . eEnx)+ Ulg, (3)
o (eEnWI @)
rg=-agn{eEng)V I-r\-rl. (5)

In equation (5), the sgn-function yields the correct sign of the ng component.
In view of egs. (1), (3), (4), and (5), eq. (2) is equivalent to the corresponding
equation given in [5]. In contrast to the procedure given in [5], it seems that
the use of the invariant vector formulation m the calculation of eR is more
convenient, especially if ec and eD are produced by deforming optical systems
between the respective points < and D, and the grating, or if the grating is an
element of a system.

For the support surface of the grating we assumed a toroidal surface shown
in fig. 3, which is given by the relation

X + (6)

Fig. 3. Toroidal surface as a grating
support

The piercing point M of the ray emerging from A on the surface (6) was cal-
culated on the base of an approximation method using tangent planes, as
described in [8].
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The beam emerging from A was described in such a way that

cos (aj + Aax)cos (a. + Aalj
eE—— 810(A+Ao7)oos(oo+Aa0) (7)
sin(a, + zla0)

The angular deviations Aax and AaO from the straight line connecting A and
8 were varied within a range such that the required aperture ratio of the grating
was ensured.

The rays of the pencil of light are intercepted by a plane (fig. 4).

The principal ray is diffracted at the point 8 of the grating with the angles
ANnpiare and “ffpiane We choose the interception plane perpendicular to the
diffracted principal ray extending at a distance IE from 8. There are several
possibilities of the choice of E~(le, ijl, 0):

— For all wavelengths, E is identified with the meridional focal position.
This means an optimization of the polychromator spectrum on the meridional
focal curve.

— In the case of a monochromator, A and B are fixed in space, and the
grating is moved to vary the wavelength. This movement can also be consi-
dered a suitably coupled movement of A and B, the grating being fixed. If the
monochromator is based on a pure rotation of the grating, IA and IB remain
constant for all the wavelengths and B is identified with E.

— IE, r\j and 70 are varied for the purpose of optimization. Then the opti-
mization is carried out in such a way that for all wavelengths the spot diagrams
are minimized with respect to the merit criterion in one and the same inter-
ception plane. In .this case we want to have a polychromator with a flat col-
lecting .surface for the spectrum.

The coordinate unit vectors of the local coordinate system in the inter-
ception plane are obtained by normalizing (eY xrB) rR and er xrB. Here
1K denotes the vector pointing in the direction of the diffracted principal ray.
This vector extends from the grating to the interception plane. In the Y'—Z'
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interception plane, the transverse aberration vector is equal to the difference
between rR and the point where the arbitrarily diffracted ray, indicated by
the direction vector eR, pierces the interception plane. The projection of the
transverse aberration vector upon the above mentioned normalized version
of the direction vectors (e7 XrR)rR and eRxrR yields the two transverse
aberration coordinates Y' and Z'.

The figure of merit employed is given by the Gauss moments' of the trans-
verse aberration coordinates. We looked for the minimum variance of the
Y' and Z' coordinates of the points. The variance of the Y' coordinates was
multiplied by a factor different from that of the Z' coordinates, because for
an oblong slit the two dimensions of the spot image are interfering in a diffe-
rent manner. In our case the figure of merit does not include the Strehl’s defini-
tion of brightness, since the resolution of the grating is far from the diffraction-
theoretical value in the major part of the spectral ranges of the gratings.

3. Structure of the programme

The finally used figure of merit results from the addition of the Gauss moments
of the spot diagrams for all equidistant wavelengths within a given interval
for a light pencil emerging from the point A. In most cases the optimization
was carried out for the central point of the slit. Every light pencil contained
9 to 49 rays. The number of wavelengths varied from 3 to 5.

The optimization was carried out by using a stochastic method. The para-
meters being free for variation were varied by random numbers. If by chance
an improved merit function was obtained, the last configuration was stored
by the computer. If no improvement resulted, the preceding configuration
was taken as a basis to start a new trial. The merit function got stable after
400 to 600 steps. For these calculations a BESM 6 computer was used. Spot
diagrams were plotted for the optimum configurations.

4. Results for a polychromator

The, figure 6 shows the meridional and sagittal focal curves for a polychromator.
The parameters for the preparation and use of the grating are: yx = 45.264°,
ij =0917°, dgq=Yg= & =149=0, lg= 24643 cm, Ip = 22.837 cm, dj
= 44.805°, Bx—B2= 20.17 cm, LE = 1880 cm, and 77~=30.54°. These
parameters were calculated by using a variant of the precalculation procedure
described in Appendix 1. In figure 5, the wavelength range from 800 nm to
822.9 nm is denoted by solid lines, while the dotted lines denote the characteri-
stics of the grating up to 400 nm. There are two points of intersection (anastig-
matic points) of the curves, one of which lies at 800 nm. Now, we optimize
the grating by means of a single varying interception plane for all wavelengths.
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The parameters being free for variation are ax, 1A, Rx= R2, y7, Ic, ID, rjjand IE.
The aperture ratio is 1:5, A =yl—dl = 44.374°. If the programme works
correctly, the anastigmatic point at 800 nm must be shifted from the boundary

Fig. 5. Focal curves of a polychro-
mator before the optimization

of the wavelength interval to its centre. Figure 6 shows that the result expected
for the focal curves was obtained.

\ A

Fig. 6. Focal curves of a polychromator
after the optimization

The parameters of the new configuration are 0 = yQ = 60 = a0 —O0,
y2 = 44.213°, bl = -0.134°, Ic = 23.586 cm, ID= 21.88 cm, 1A = 22.279 cm,

= 44.628°, Rx = —20.477 cm, rjz = 30.635°, IE = 20.111 cm. The spot
diagrams shown in fig. 7 demonstrate the result. The top row contains the
spot diagrams for three wavelengths at the beginning of the optimization.

The bottom row shows the variation of the spot diagrams after the opti-
mization, where equal weights were attached to the height and the width of
the spot diagrams. The concentration of the spots has been improved.

5. Results for monochromators

The case of a monochromator was tested with wavelength tuning by means
of a pure rotation of the grating. The starting values for the monochromator
precalculation programme, as described in Appendix 2, were IA —40 cm,
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IB=80cm, Bx= B2= B = 50 cm, Arax = 600 nm, Xn = 500 nm, * in = 400

nm, A = yj—aj = 30°, @ = a—3 = 20°. Then the following configuration for

an astigmatism = 0 and coma 1=0 resulted from the precalculation for

Xn=500nm, B =50 cm, Ic = 43.423 cm, ID = 39.302 cm, yx = 26.883°,

dj = —3.111°, yQ= 60 = aQ = 0, a2(500 nm) = 26.305°. This is the starting

configuration for the automatic correction. The top row of fig. 8 shows the
800nm

811.45nm 822.9nm
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Fig. 7. Spot diagram for a polychromator before and after the optimization
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spot diagrams for this starting configuration for five wavelengths. The second
row shows the spot diagrams plotted after the automatic optimization, where
equal weights were attached to the height and the width of the spot diagrams.
In this case the programme favours the height reduction. The third row is ob-
tained by emphasizing reduction of height. If the width reduction is emphasized,
as is preferable for monochromators, then the lowermost row results. The
configuration of the grating for the last-mentioned monochromator is given
by B = 52.803cm, Ic = 42,179 cm, ID = 41.488 cm, y = 26.588°, & = -3.412°,
a7(500 nm) = 26.324°, a0 = yQ = dQ = 0. The efficiency of the optimization
is obvious.

6. Conclusion

The principal work has to be done in the precalculation, because the type of
grating is given by this computational step. In most cases the automatic cor-
rection cannot test all of the possible cases. Thus, only a local optimum is looked
for. Generally, we do not look for an “unexpected new type” of the grating
to be obtained by automatic correction, but only for a maximum utilization
of all the possibilities offered by the chosen type of grating.

Appendix 1
A possible precalculation for polychromators

Precalculations can be done by using analytical formulae for the different types of aberration
as described in the literature e.g. in [3] or [6]. For selected wavelengths, these aberrations
can be subject to several restrictions, for example, they can be required to be zero. Then we
obtain sets of equations for the free parameters. Frequently, the number of the actually
free parameters is limited by the respective application.

The figure Al shows a pair of general focal curves of a corrected concave grating. The po-

sagittal

Fig. Al. Meridional focal curve M, sagittal focal
curve S, slit A and grating G in a polychromator
configuration
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sition of the slit A is required to be given by the wavelength of autocollimation, Aauto>which
means a back-diffraction into the direction of incidence. Let the two curves intersect at X8.
At X8 the tangents of both focal curves shall be parallel to each other. These conditions
determine the range of “symmetrical” correction. For the sake of mathematical simplicity
we assume Ic = ID. The input y —d fixes the approximate number of grooves per mm of
the grating, the approximate value g of the grating constant being A/2 sin(y —8)/2. The
complete set of inputs comprises A, Aaut0, A, Xm, B, Ig, andy —d. The obtained set of equations
can be transformed into a single equation for one unknown, v = (y+ 6)/2, by successive
elimination:

a = arcsin(kAaut0Ocosr/2gr), (Al)
(grating equations for Aaut0);

p8 = arcsin (kX8cosv/g —sina), (A2)
(grating equation for XB);

Pm = arcsin (kXmco&v/g—sina), (A3)
(grating equation for Xm);

(BIB) = (1-2(5/10)008”1 - (A0/2gr)2)tant;, (A4)
(notation B);

(B/1A) = co82p3[{co&a + coBps+ (&ina+ Bin(}8)(B/B)} (A5)
/cos2p8—cosa —cosp8—(sina + sin/B)tanu]/(cos2a —co0s23),
(astigmatism at X8);

(A/B) — —B/I~cos™a +cosa + (BJB)sina, (A6)
(notation A);

8 = 2tanpm+ (sinpm- (B/B)coapm)I((AB) + cosj3m+ (B/B)awpm)f (A7)
(notation S);

(Stsbnpm + 1)/(8 —ta,npm) = (1 —(B/IA)coapm+ cftsacos/3m+ cossin atant?)

/(tanv—(B/1™) sinpm+ sinpmcosa+ sinpmcosatanv), (A8)
(parallel tangents at Xm).

All of the angles aye inplane angles, Ais the wavelength used in the preparation of the grating.
After a successive substitution of (Al) through (A7), eq. (A8) can be solved for v by means
of Newton’s algorithm using a small computer. From the resulting v and the given quantity
y —d one obtains y and d, and from these values the whole configuration is derived. Optimal
courses of the focal curves are obtained by a suitable choice of Aauto> and Am.

Appendix 2

A possible precalculation for monochromators

The figure A2 shows a monochromator tuned by a rotation of the grating. The following
parameters are given: 1™, Ig, No. of grooves/mm, subject to the condition A = y—d (see
Appendix 1), the wavelength X8 at which the astigmatism as well as coma 1 are zero, the
radius of curvature, B, of the support, and the angle ¢ between A, 8, and B. From these
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conditions, a set of equations for one unknown y can be derived:
E = fofa(siny —sin <5)/7, (A9)

a = arcsin(JET/2—"H2/4 —(H2—sin2g?)/(2(l-|-c0S9>))), (A10)
(grating equation for Aa);

Fig. A2. Fixed slit A, fixed slit image B, and rotated
grating O in a monochromator contiguration

P = a-<p, (All)

B = A{l/IB-(coBp8+ cosa8)/R + I/1A)/(KAB)+ (cosy-cos (y-A))/R, (A12)
(notation B);

= J3sin $¥c0s2<5-(sinycosy —sin<5c0s<5)/(2.K), (A13)

K2 = siny cos2y —sin €co0s2<G (A14)

K3 = —(B2sin $c0s2<62—Bsin<5c0s<5/(2E)) —A0ZT4/(fcAs), (A15)

i 4 = (coaallA -1 /R)BiriacoBal(21A)+ (coap/IB-1/B)sinpcosp/(21B) (A16)

notations Kt through 2T4);

Ub = -KIK* +V(K1/*.)* - 2K3/K2, (A17)
(astigmatism at Afi);
1/ld = 1/h-B, (A18)
0.= —coe?p/IB —cos2a/l™ + (cosa + co0s/?)/2?4- kX8(coB2y/Ic —cosy/R —cob26/lj) +
+ cos 8/R)/A0(coma 1 = 0 at A«). (A19)

Using (A9) through (A19), from (A19) one obtains the solution y by means of Newton’s
algorithm. The configuration of the grating can be derived from y.
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Koppekumsa ronorpaueckux BOrHYTbIX CETOK

OnpegeneHre pasMepoB FoIorPativuecKnx CETOK TPEBYET NPUHSATUA CeAYIOLMUX Mep: BbIGopa TUMa CeTKH,
npeaBapuUTeNIbHONO MEPECHET, a TaKkKe aBTOMATUYECKO KOPPeKLMiA. ABTOMATUYeCKasl KOPPEKLMS A0/HKHA
GbITb OCHOBaHa Ha MepecyéTax Mydyka jiydeil. B Hallem MeTofe MepecyéTa MPUHSITO, UTO CETKM COCTOST
13 6ECKOHEUHbIX NIOCKMX CETOK. OnucaHa Audpakuys nyya, NajatoLero ¢ NoMoLLbI /IOKa/IbHO UHBapHa-
HTHbIX BEKTOPOB. B KauecTBe (yHKLWI Lienn 6bIn UCMOoMb30oBaHbl MOMeHTbI aycca Ansa cneaoBoit ava-
rpamMmbl (spot diagram). MpyMepbl ONTUMM3ALMM NPYBEAEHbI A1 MOIMXPOMATOPOB, a Takke MOHO-
XpOMaToB BMeCTe C MpefBapuTebHbIMM pPacuéTamu.



