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Deformations of the time-space structure of a laser
pulse due to two-photon absorption

JAN BADZIAK

S. Kaliski Institute of Plasma Physics and Laser Microfusion, 00-908 Warszawa, Poland.

Starging with paraxial equations for intensity, an eikonal of the light wave and the kinetic equation
for the difference of level population, deformations of the space-time structure of a laser, pulse
performed in two-photon absorbing medium under the condition of noncoherent interaction are
studied. The functions of time and space compression, as well as the results of numerical solutions
of the two-dimensional equations of propagation are used in the analysis. The basic features of the
changes in space and time of radiation intensity distribution were determined for the cases of quasi
stationary and nonstationary interactions and that of weak signal. It has been shown that the two
photon absorption leads to essential heterogeneity in the time-space pulse structure. The results of
the experimental examinations of time, space and energy changes of neodymium laser pulse due to
two-photon absorption in the gallium arsenide are shown.

1. Introduction

Two-photon absorption is one of the interesting manifestation of the nonlinear interaction
of radiaticn with the matter. In a series of both theoretical and experimental works it has
been pointed out that the effectivity of this process is sufficient to be used in the laser tech-
nique, in particular, to control the parameters of strong pulse lasers [1-9]. In the papers
devoted to this problem the attention is paid to analysis and examinations of changes in
time-energy characteristic of pulses occurring due to two-photon absorption, whereas one
dimensional models were used to describe these changes. In the teoretical considerations
the existence of coupling between the time and space distribution of the field in nonlinear
medium as well as the possibility of essential deformations of spatialstructure of radiation
were neglected. The exploitation of the two-photon absorbents in thelaser techniques necessi-
tates multi-sided and detailed examination of two-photon absorption influence on the para-
meters and time-space structure of radiation. The examination of this type is interesting also
due to the fact that the two-photon absorption occurring in a number of materials used com-
monly in the laser technique to generate and amplify the radiation (for instance, the neodym-
ium glass, rubin [10-12]), or to generate the harmonics [13-15] and the like, may change
to a high degree the characteristics of radiation propagating in the media and modify the
occurring processes. In the available elaborations the problem of time-space pulse struc-
ture deformation due to two-photon absorption both for coherent and noncoherent inter-
actions has not been sufficiently analysed and described.

In this work the changes in time-space intensity distribution of radiation occurring
in the two-photon absorbing medium under the condition of noncoherent radiation-matter
interaction have been analysed, starting with paraxial equations for intensity and the light
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wave eikonal as well as the kinetic equation for differences in the level populations. The
basic features concerning these changes for quasi-stationary and nonstationary interactions
as well as for small signal are determined. The time and space compression functions are
employed in the analysis [5, 16], while the main results of the latter are illustrated by numer-
ical solutions of the propagation equations. The results of experimental examinations of
changes occurring in time, space and energy characteristics of neodymium laser pulses due
o two-photon absorption in gallium arsenide are presented.

2. Basic equations and relative dependences

The subject of the considerations presented below will be the changes in time-space distri-
bution of the radiation propagation in the two-photon absorbing medium (E,—E; = 2hw,
where E,, E, — energy levels, o — central frequency of radiation) under the condition
of noncoherent interaction®. Phenomenological description of this changes in an isotropic
and uniform medium characterized by a weak dependence of the refractive index upon the
field applied may be obtained from the equations for intensity 7 and eikonal ¥ and the
effective difference in the population density N of the levels considered, which in the system
of axial symmetry have the forms (for instance, [16]):
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where: r, z — variables in the directions parallel and perpendicular to that of the radiation
' 02 10
propagation, respectively, t — time, 4, = Fr + P v — light velocity in the medium,
r r or

k = 2x[L — wave number, N*> 0 — population difference in the state of equilibrium,
T, — relaxation time, ¢ — cross-section for two-photon transitions, s — parameter depend-
ing upon the relaxation scheme (for two-level scheme siw = 2), p — linear loss coeffi-
cient. The egs. (1), (2) may be easily obtained from the parabolic equation**, for the com-
plex slowly varying amplitude of the electric field E by the substitution

E(t,z,r) = A(t, z, r)e*¥®*D [ = a4?,
where @ — constant depending upon the choise of units.

*Le. in the case when the pulse duration is much longer than the elongation relaxation time of
the medium.

**For the conditions of applicability of parabolic equation for E and by the same means for
egs. (1), (2), see [16, 17], for instance.
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The basic features of the changesin the time and space distribution of radiation intensity,
due to nonlinear resonance interaction with the medium, may be determined-without solv-
. . . 1 dr, 1 dr, .
ing the egs. (1)-(4)-by using the time = — — —%and space § = — ——~2compression

T, dz r, dz
functions [5, 16] (v, — effective width of the time distribution of intensity at the distance
r from the beam axis, r, — effective width of the spatial distribution of intensity at the mo-

z e . . . .
ment 7 = t— —). These functions determine the relative rate of the respective changes in
v

the width of both time and space radiation intensity distributions in the medium. In accord-
ance with [16], for ¥ ~ constant and in a uniform medium we have

4y 1 d, 1
=2 [K(Ih,r,.) K( Ih,rl)]+7[K(Ih,rh)—K(3 I,,,rz)], )

where I, = I(v;, r, z) — intensity at the time distribution maximum, 7,, 7,, 7, — points
corresponding to the time maximum of intensity and to the half-width of its front and back
slope, respectively, d,, 6, > 0 — coefficients of respective slopes for the time distribution

— @k

T lfx(z) Tp 91(2)

o= fous-x ) - o

where I, = I(-r, r = 0, z) — intensity at the spatial distribution maximum, y > 0 — slope

117,
o1 = — — 2 The coef-

or \ " Y1
ficients 8, , d,, y are, in general, slowly varying functions of coordinates as compared with

I, I, ©,, r,. In the case when the absorption function K is explicity time-independent (the
quasi-stationary interaction) the function T takes the form

8,+0, 1
T= 5 [K(I,,)—K (7 I,,)], ™

which is analogical to the form of the spatial compression function S. This means that in
this case the changes in time and space intensity distributions of radiation evoked by the
resonance interaction occur in an analogical way. This analogy is no more valid for nonsta-
tionary interaction.

dependence are determined by the relationship and

coefficient for the spatial distribution defined by the formula ——

3. Deformations in time distribution of radiation

Let us consider the changes in the time and space intensity distributions of radiation occur-
ring due to nonlinear interaction with the absorbent in the three limiting cases, namely:
in quasi-stationary interaction (v, < T), nonstationary interaction (z, > 7;) and small
signal (N(I) ~ N¢ = const). In the case when 7, > T, in accordance with (3) and (4),
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the absorption function of absorbent takes the form

__ BP(nm)
- —1iPeg ° ®

where P = I|I%, I' = (soTy)~*/* — intensity of absorption saturation, g, = 20N°I". The
dependence K(P) is nonmonotonous and has one minimum at P = 1. For this value of in-

1
tensity the two-photon absorption is greatest, while |K], ., = > B,+o. Due to the appear-

ance of the extremum of the function K(P), the central part of the pulse slopes will be most
strongly absorbent in the case of the pulse of top intensity I, > I°, while the absorption
at its top and bottom will be weaker.

The rate of changes in time intensity distribution of radiation is described by time com-
pression function being, in accordance with (7) and (8), of the form

T=—3 PO e ror y

where P, = I,/I°. The dependence of the function T upon the top intensity P, is illustrated
in fig. 1a. In the region P, < V2 the time distribution (its half-width) is widened, while its
compression takes place in the region P, > V2. There exist optimal values of P, close to
0.5 and 3.5, respectively, for which the spead of the widening and compression of distri-
bution is the greatest. Figure 1b presents, in turn, the rate of changes in the width of time
distribution as a function of the distance from the axis of the beam of Gaussian profile
I(r). The parameter is here the intensity at the maximum of the time-space distribution

P, = P(t = 1,, r =0, 2). In the case when P,,, < V2a widening of the time distribution
occurs within the whole range of r, for P,,, les, or equal to the value optimal from the view-

2 b
éB° T

0.1

Fig. 1. a. Dependence of the time compression function of two-photon absorption upon the top pulse
intensity, for the case of quasi-stationary interaction. b. Relative speed of changes in the width of the time
intensity distribution of Gaussian profile I(r) as a function of the distance from the beam axis
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point of decompression (P,,, = 0.5) the maximum speed of widening occurs on the beam
axis, and for P,,, greater than the optimal one - at the slope of the space distribution. In the
case when P, > V2 the time distribution at the neighbourhood of the beam axis is subject
to compression, being widened at the periphery of the distribution I(r). For the values of
P, greater than 3.5 the maxima of both the compression and widening speeds occur on the
slopes of the space distribution. A consequence of the shown T'(r) dependence is the non-
uniformity of the time-space structure of radiation. The intensity distribution at the output
of absorbent may no more be written in the form I(z, r) = af(z)g(r). It is also clear that
the shape of the spatial distribution of radiation entering the medium under these condi-
tions will essentially influence the character of time changes in the radiation power distri-
bution 2(1), (i.e., intensity integrated over the light beam cross-section). It is also possible
that the compression of the time distributions of the power in the medium will occur for
quasi-rectangular distribution of I(r) and the widening of the same distribution for distri-
bution of I(r) with mild slopes.

The expression (9) allows us to obtain an approximate analytic expression, describing
the dependence of width 7, upon the top intensity of the pulse at the point , useful for esti-
mations. For §, > ¢ and small divergence of the beam we have

. -;:— 8/2 P;f+4 3/46
P r\p,] \PP44]

8,44

where 6 =

2 — average slope coefficient for the distribution in the discussed interval

of the changes of Pj.

In case of quasi-stationary interaction and plane wavefront of radiation an analytical
solution of the eq. (1) may be obtained. In particular, for ¢ = 0 and expressed in r, T
variables it has the form

P(r,r) = [Po2—P°B,1—1+V(1—P**+P°B,1)*+4P"?],

1
2P%(z, r)
where I — length of the propagation path, P°(z, r) — input distribution. For beams of non-
plane wavefronts the numerical methods must be unavoidably used. The exemplified results
of numerical solutions of egs. (1), (2) with the absorption function (8) are presented in fig. 2a;
they illustrate the deformations of time distributions of power (4) and intensity (1)-(3)
of radiation at different distances from the beam axis as compared to the input distribution
(broken line). The input distributions were assumed in the forms:

72 r? 2
Iz, r,z=z)=I1I0exp| ——— =), Y@ r z=2z2)=
(s ) o) hm 13 r: s LA o 220,

and the following values for parameters were accepted: I, = 10I°,r, = 0.5cm, z,= 10°cm,.
k=6-10* cm™, B, =0.2 cm™!, p =0.01 cm™*.

*As shown by numerical calculations the coefficient for input distribution may be also accepted
for estimations in place of average coefficient.
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From the graphs presented it may be seen, in particular, that the changes in the time
distribution of intensity in different points » occur in different way: in the vicinity of the
beam axis the distribution compression developes and a two-step profile I(z) is formed, while
the widening of the distribution I(z) occurs on the slopes of the spatial distribution.

In the case 7, < T, the absorption function for the two-photon absorbent takes the
form:

= —BI(z, r)exp [ —so f (7, r)dz-’] —o, (10)
where f = 20N°. -

1l =10cm Ll =30cm

Fig. 2. Time deformation of the both power (4) and intensity (1, 2, 3) distributions of radiation at different
distances from the Gaussian beam axis for the case of quasi-stationary (a), and nonstationary (b) interaction
with two-photon absorbent. 1 — r=10, 2 - r=3/5 ry, 3 — r = 6/5 ry. Broken line denotes input
distribution
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By analysing the expression (10) it is easy to show that the function K is, in general,
a nonmonotonic function of both top pulse intensity and the time 7, and that the maximum
absorption is associated with the front slope of the time distribution. For the value I, exceed-
ing several times the values characteristic of the saturation: I; = (sa-rp)“” 2 astrong absorp-
tion will occur in the central part of the pulse front and a weaker one in its bottom, top
and the back front.

By substituting (10) to (5) we get

r=1mol. [% exp (71 2 () —exp (1, I3 (r))]

y (1n)
—ts [exp(—.120))— 5 exe (.20
where
L ey Iz, r)
Xi2) = 5O _£ fz(f’ l')d’t', in = SO'_‘!; f2(1.’ r)df; f(‘l, I') = I,,(’r) .

From eq. (11) it follows, in particular, that in contrast to the case of quasi-stationary
interaction both the speed and the direction changes in the width of time intensity distribu-
tion depend essentially upon its shape and upon the symmetry, among others. In the case
of sharp front slope (6, ~ 0) the nonstationary two-photon absorption leads to some broad-
ening of distribution. For the symmetric distribution (6; = d,) or asymmetric ones with
sharp back slope (6, = 0) both the broadening and compression of the distribution may
happen depending upon the value of I,. The greatest speed of compresion may be obtained
at 6, = 0. The above considerations are illustrated in fig. 3. For the quasi-stationary inter-

A
6‘2'—'0
02+
0 1 2 3y
-0.2t+
dfd.z
-04} d=0

Fig. 3. Dependence of the time compression function upon the top pulse intensity for the case of non-
stationary interaction with two-photon absorbent.
8; = 0 — pulse with sharp front slope, 6, = 0 — pulse with sharp back slope, 8; = 8, — symmetric pulse.

8

- 1/2 ——
Y = (125071121, 4 TP
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action, in general, much higher compressions may be achieved than for nonstationary
interaction, since, in the first case the compression results from shortening of both front
and back slopes, while in the second one it results from shortening of the front slope but
widening of the back one.

In the nonstationary case, similarly as for 7, > T, the character of the changes in time
distribution is different at different distances from the beam axis. This is illustrated in fig. 2b,
representing the numerical results of the solutions of egs. (1) and (2) with the absorption
function (10) at g =2-10"*° cm/W, I,,, = 2-10'® W/cm?, so7, = 10~1° cm*/W? and
other parameters as in the quasi-stationary case.

The case is often in practice realized in which the radiation intensity is much less than
intensity needed to saturate the two-photon absorption. In this case from (9) or (11) we
may obtain:

_ 6,44,

R (12)

T =

which means that the speed of time distribution broadening at the point r is for small signal
proportional to its top intensity at this point. On the base of (12) we may obtain the expres-
sions describing the dependence of the distribution width 7, upon the top intensity

R IO_I_Q é/2
P = Tp ﬂIh:—Q (13)
or .
7° 8/2
7, =13 [1+ 4 eh (1-—e"”)] . (14)

By letting 7, =0 in eq. (13) we obtain the expression determining the maximal pulse
broadening in two-photon absorbent
3

o
TP

Bl +e
0

From this expression it follows in particular that the essential pulse broadening is possible
only when the losses evoked by the two-photon transitions are much higher than the linear
losses in the absorbent.

Experimental examinations of deformation of the time distribution of radiation were
carried out in the system composed of three amplifiers based on the neodymium glass and
four plates of gallium arsenide (two-photon absorbent) each of thickness 0.05 cm. The ampli-
fiers and absorbents were positioned alternatively. The laser pulse of effective length ~10 ns
entering the system came from the YAG:Nd3* crystal generator completed by two pream-
plifiers and an electrooptical pulse forming system. The measurements were carried out
according to typical methodology that consisted in recording the energy, length and shape
(on an oscilloscope) of both the input and output pulses for the two-component system
under test. The parameters of the input pulse were chosen so that after replacing the gallium
arsenide plates by linear damping elements no essential pulse deformation was obtained.

é/2

1s)

max
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The results of pulse deformation tests and their comparison with the results of numericat
calculations are shown in fig. 4. The calculations were made taking the parameters measured
in the experiment and assuming that the wavefront is plane, while the spatial distribution of
radiationisrectangularand I° = oo.

To/Tp

10ns,

'
40 80 120 o[MWT]
l cm2

Fig. 4. Deformation of time shape of pulse in the system with two-photon absorbent obtained from expe-
riment (a), and from calculations (b). The input pulse situated on the right hand side. ¢ — dependence of
the pulse length at the output upon the input pulse intensity:

1 — experiment, 2 — theory

In the case when the radiation intensity is much less than the saturation intensity I*
the two-photon absorption may lead to stability of the top power in the pulse leaving the
system containing two-photon absorbents (for instance, [5, 8]). The effect of power stabili-
zation due to two-photon absorption in gallium arsenide is illustrated in fig. 5 presenting
he dependences of energy and power of the pulse leaving the examined two-component
system upon the input intensity obtained from the measurements (5a) and calculations (5b).

Efm1) {2 [Mw] efm11{PMw]

50 _—\ + 50
-2

30-'+- b 3 \-+ 30-

1 1 - 1 pos 1 1
80 120 MW 40 80 120 o[ MW

“© 1 [sz] 1 [cm2 ]
Fig. 5. Energy and power of the pulse emerging from the two-component system as a function of intensity of

the input pulse.
a — results of measurements, b — results of calculations
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4. Deformation in space distribution of radiation

In case of quasi-stationary interaction of radiation with the matter the expression for the
functions of time and space compressions (6) and (7) are of analogical form, which means
that the changes in the time and space distributions of radiation intensity evoked by two-
photon absorption occur in an analogical way. These expressions become identical if
7,(r), P4(r), 6,19, is replaced by r,(7), P,(7), y. By the same means all the conclusions
and formulae obtained in Section 3 and concerning the changes in time distribution of
radiation in the case of quasi-stationary interaction and small signal level are correct also
with reference to the changes of space distribution (in the formulae only the mentioned

L =20cm

——

r

Fig. 6. a. Deformations of the spatial energy density distributions (4) and the radiation intensity on the front
slope (1, 2) as well as those in the time maximum (3) of the pulse in the case of quasi-stationary interaction
with two-photon absorbent. b. Deformations of the space energy density distributions (4) and of the radiation
intensity on the front slope (1) in the time maximum (2) and on the back slope (3) of the pulse in the case of
nonstationary interaction. Broken line denotes the input distribution
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transformation of variables should be performed). This is confirmed by the detailed numer-
ical results (1), (2). The examplified results are shown in fig. 6a presenting the deformations

of the spatial distribution of the energy density &(r) = [ I(z, r)dr and the radiation inten-

sity at various moments of time 7. The input distributions and parameters are here the same
as in fig. 2a. Below we shall concentrate our attention to the case of nonstationary interac-
tion.

By substitution (10) to (6) we obtain

1
5= g {exp [— ;x(r)lzm]—zexp[—x(r)li,.]}, (16
where
1@ =s0 [fd.

In fig. 7a the function of spatial compression at the time maximum of pulse normed to the

value B = —471 Bxw"? is presented as related to the relative intensity Z = y}/%l,,. Simi-
larly, as in the case of quasi-stationary the regions of compression and decompression of
the distribution Z,(r) appear on the intensity axis, but both value and the direction of changes
in this distribution depend essentially upon the effective length slope. For infinitely short
front slope the distribution I,(r) is broadened with the speed proportional to I,,:S,

= — —Z— Bl If x, # 0 the maximum speed of decompression is greater than the maximum

speed of broadening (in the case of time distribution the situation is reversed). The compres-
sion of the space distribution at the vicinity of the time maximum may be obtained at lower
top intensities in the case of pulses with long front slope. Figure 7b presents the relative
speed of changes in the width of the spatial intensity distribution at various moments = for
a pulse of Gaussian time shape. For great values of Z(Z > 1) both the maximum speed of
broadening and that of compression occur on the front slope of the pulse. The reduction
of Z is accompanied by a shift of these maxima in the direction of increasing values of = and
by a decrease of compression region on the axis  so, that for certain Z only the back slope

of the pulse occurs. After reduction of Zto the valuesless than l/-i— In2 (for the symmetric

pulse) the broadening of space distribution takes place within the whole range of 7. For
Z < 1 the greatest speed of the spatial distribution broadening occurs at the vicinity of the
time maximum of the pulse. From the formula (16) and the graphs shown it follows that
in the case of nonstationary interaction the time characteristics of radiation decide, to an
essential degree, about the character of changes in the space distribution.

The conclusions following from the analysis of the function S confirm fully the results
of numerical solutions of egs. (1) and (2) with the absorption function (10). Some examples
of numerical calculations are presented in fig. 6b (the parameters as in fig. 2b).

In practice, we usually deal with the radiation distributions, in which there exist a num-
ber of fluctuations, which result, for instance, from diffraction from heterogeneities and
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apertures of optical system, the statistical nature of the generation and the like. The regula-
rities described above, concerning the changes both in spatial and time radiation distribu-
tions, should in this case refer to their envelopes. The influence of the two-photon absorp-
tion on the character of changes in the fluctuations (their contrast with respect to the back-

Sn/B &
08f.
04k
0
z
-04F
b
—2 ::
To

Fig. 7. The function of spatial compression in two-photon absorbent in the case of nonstationary interaction.

a — relative speed of changes in the intensity distribution width as a function of ntensity on the axis.b — relative speed of change s
in the intensity distribution at various time moments 7
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ground) may be of two types. In the case when the intensity of fluctuations is higher than
the intensity necessary to saturate the absorption the nonlinear interaction with two-photon
medium will lead to an enhancement of their contrast. On the other hand, for the fluctuation
intensities less than the saturation intensity the two-photon absorption will result in their
smoothing. The smoothing effect in the spatial distribution of radiation is illustrated in
fig. 8 presenting the results of numerical solutions of egs. (1), (2) for I, < (s070)~ 2,
Bl =2.5-10"° cm?/W, and the other parameters as in fig. 2b.

Fig. 8. The smoothing of the nonuniformi-
ties in the spatial distribution of radiation
due to two-photon absorption.

R 1 — distribution at the absorbent input, 2 — dis ri-
0 05 1.0 r[cm] bution at the absorbent output

The experimental examinations of the changes in the spatial distribution of radiation due
to two-photon absorption have been carried out in a laser system containing: a YAG:Nd*+
crystal generator offering a possibility of single-pulse or multi-pulse generation of pico-
second pulses, an electrooptical system short pulse separation, two YAG:Nd3* crystal
amplifiers and a neodymium glass amplifier. A plate of gallium arsenide dopped with neo-
dymium of 0.5 cm thickness, polished on both sides and positioned perpendicularly to the
direction of radiation propagation was used as two-photon absorbent. The examination
of the plate damping showed the dependence of the damping upon the radiation intensity
to be close to linear, which is typical of nonsaturated two-photon absorption. The exami-
nations of changes in spatial distribution of energy density in the laser beam have been per-
formed for nanosecond (7, ~ 4 ns) and picosecond (7, ~ 5-107'" 5) pulses. The distri-
butions were recorded on the light sensitive plates situated at the distance of about 10 cm
from the absorbent. In order to obtain approximately the same radiation intensities on the
plates for various intensity values of the pulse entering the absorbent the radiation was siu-
tably damped by using the proper linear filters. These filters did not cause observable
changes in the radiation intensity distribution. Both in the case of nanosecond and
picosecond pulses partial smoothing of nonuniformity in the distribution was observed
as well as its broadening increasing with input pulse intensity. Typical densitograms of
the spatial distributions of radiation energy at the input (a) and output (b) of the
two-photon absorber and the dependence of the effective width of the output distribution
upon the average intensity of the picosecond pulse are presented in fig. 9.

Finally, let us notice that the effect of nonuniform time-space structure of radiation
occurring due to two-photon absorption and the existence of mutual relation between its
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b
4 6 8 10 20 "30 1°-10'7[w/cm2]

Fig. 9. The densitograms of the spatial distribution of the radiation energy density at the input (a), and
output (b) of the GaAs plate and the dependence of the effective width of the output distribution upon the
intensity (c) of the picosecond pulse

time and space characteristics under the nonstationary interaction reduces in an essential
degree the applicability of the one-dimensional models to the description of pulse propa-
gation in two-photon medium. These models, giving correct qualitative description, may
simultaneously lead to significant quantitative errors and high divergences with the expe-
rimental results.
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Jledopmanun BpeMEHHO-IPOCTPAHCTBEHHOH CTPYKTYPHI JIa3€PHOr0 HMIYJbCA B pe3y/bTaTe
aByx¢oToHHOH aGcopOum

Hcxons u3 mapakChsUIbHBIX YpaBHEHHU Uil HHTEHCHBHOCTH M 3HKOHAaja CBETOBOM BOJIHBI, a TaKke KH-
HETHYECKOr0 YpaBHEHHS IUIA PAa3HOCTH 3alOHEHHM ypOBHEH MpoaHAIM3HPOBaHBI AedopManmd Bpemed-
HO-IIPOCTPAHCTBEHHON CTPYKTYPBI JIa3epHOTO HMITYJIbCa, IPOUCXOAAIHE B AByX(hOTOHHON moryiomaromeit
cpene B YCJIOBHAX HEKOTEPEHTHOIO B3auMoAeHCTBHA. [[/Ig aHANM3a HCOOJBb30BaHEl HYHKLAH BPEMEHHOTO
M IPOCTPAaHCTBEHHOTO CXAaTHSA, a TaKXe pe3yIbTaThbl YHCIICHHBIX PELICHHH ABYMEPHBIX YPaBHEHHH pac-
npocrpanends. OnpeeieHbl OCHOBHbIE 3aKOHOMEPHOCTH KacaIOIUECsi H3MEHEHAH BpEeMEHHOT'O B IPOCTPaH-
CTBEHHOTO pachpelnejieHu#i HHTEHCHBHOCTEM M3JIy4YeHHs B CIydae KBa3UCTAaLIMOHADHOTO H HECTALMOHAp-
HOTO B3aHMOJEHCTBHIA, a Takke cnaboro carnana. IToka3aHo, 4To aByx$oTOHHAs aGcopOmMA OPHBOOMUT
K CYLIECTBEHHO! HEOJHOPOIHOCTH BPEMEHHO-IPOCTPAHCTBEHHOM CTPYKTYpPHI HMMITYJIbca. IIpencraBieHbI
pe3ynbTaThl 3KCIEPHMEHTAJIBHBIX HCCICAOBAHHM BPEMEHHBIX, IIPOCTPAHCTBEHHBIX H JHEPreTHYCCKHX H3-
MEHEHHM XapaKTePHCTHK HMIYJIbCAa HEOJUMHOrOBO Jia3epa, IOJYYeHHHIX npH IByXdoromHo#t abGcop-
OuMd B apCeHHE rayms.



