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1V. Analysis of the accuracy of the applied method of calculation

K rzysztof Jezierski, Jan Misiewicz, Janusz Wnuk, Janusz M. Pawlikowski
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The present paper consists of five parts and is devoted mainly to the results of examination of optical
constants in Zn3As2 and Zn3P2 which are compounds of 113-V 2 type with broad energy gap. The
analysis of the up to now state-of-affairs, so far as the application of the Kramers-Kronig analysis
method (KK) for the complex coefficient of reflection is concerned, indicates that it is necessary
to develop the research in three additional directions described in the first parts of this series. In
the part | a critical analysis of the calculation methods used till now and based on dispersion rela-
tions due to Kramers and Kronig has been presented. Also the methods of calculation of optical
constants not employing the KK integral have been discussed. In the parts Il and 111 some sugges-
tions of effective improvements of calculation method basing on the KK integrals have been described.
Additionally, in both the parts the results of calculations were described for GaAs (as a well known
semiconductor) which was employed to test the methods improved by us.

The extensive analysis of errors and accuracies of the calculation methods is given in the pres-
ent (IV) part of this work. New possible sources of errors are considered and their influence on
the final result of calculations is estimated. An illustration of the discussion carried out are the re-
sults obtained for GaAs and Zn3P2.

The part V contains the results of calculations of optical constants for Zn3As2 and Zn3P2,
carried out by using the improved methods of calculation and basing on our own measurements
of optical properties of these semiconductors.

1. Introduction

By applying the methods of calculations based on the Kramers-Kronig relations (see the pre-
vious parts of this work [1-3]), the spectral characteristics of the complex coefficient of
dielectric permittivity and the complex refractive index may be obtained. A problem ari-
ses whether and to what degree the estimated values for the optical constants are consis-
tent with their real values. For this purpose it is necessary to consider two possible sources
of errors and estimate their influences on the final result of calculations. Similarly,
as it was the case in the part 11l of this work [3], the analysis will be illustrated mainly

by the results obtained for reflection spectrum of GaAs after [4].

* Work sponsored under the Research Project PR-3.08.
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2. Measurement errors

While measuring the reflection coefficient for a given sample and for given frequency of
radiation some spread ofresults is observed which depends mainly on the quality ofthe meas-
uring setup. The accuracy of the reflection coefficient measurements in the visible range
oscillates between 0.03°/0 [5] and 2% [6]. However, practically much greater spread of
results is observed when measuring R at the given frequency but for different samples.
This spread is caused by different surface qualities of particular samples. As it has been
shown in paper [7] the differences between the reflection coefficient values for differently
prepared surfaces of silicon samples may reach even 30°/o. Similar results for InAs and
InSb have been obtained in paper [8].

Thus, the experimental error of the reflection coefficient may be interpreted as a meas-
ure of the spread of results obtained for well prepared sample surfaces or surfaces giving
the greatest possible coefficients of reflection for the given material, which are simulta-
neously characterized by a distinct structure of the reflection spectrum. This error has
been estimated, for instance, in the papers [9, 10] to be 5% (measurements for Si and Ge
in the 1-10 eV range), in the papers [11] to be 3%,0 (measurements for MoTe2 in the range
77-6.2 eV), and in the paper [12] to be 1°/0 (measurements for InSe in the range 1.5-
55 eV).

The measurement error becomes next the source of error 2<9™s (an absolute error
in the phase change during reflection calculated from the Kramers-Kronig integral in
the measurement range (formula (2b) in [3]). Evidently, the error of numerical integra-
tion AS@&c should be also taken into account, but it may be assumed that AGE c

AS™egs, as it will be shown in the Section 3 of this paper.

By taking advantage of the well known formulae for the real (ex) and imaginary (e2)
parts of the complex coefficient of dielectric permittivity the following relations may be
obtained:

AR
Aet = ra \(N2jrx)k\-\-AS\2n(x—k 2\, (1a)
AR
Ae2 = \(Xx—8&2>/|-M<9|2& (*+«2)|, (Ib)
where

x = [—4i?+21/i2(1-fid)cos O[L  2vIT%00s<9]-2.

When considering the influence of the measurement error, AR, on the results it is usually
assumed that AS — AS™ess. In order to determine AS™ees the calculations were per-
formed for reflection spectra distorted in the error limits so that the discrepancies in the ob-
tained values of S 2 be maximal. The values of Ae2 (formula (Ib)), obtained for calcula-
tions basing on the reflection spectra for GaAs under assumption that AR amounts suc-
cessively to 1%, 0.5°/oand 0.1%), are shown in Fig. 1 Also the spectra of Ae2/e2 and e2
are there presented. When examining the effect of the measurement error on the accuracy
of the calculated optical constants, the method of calculation, as such, plays a minor role.
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Hence, in the programme of calculation one of the most simple methods, i.e., Roessler
method [1], was used.

When analysing the results obtained, an approximately linear dependence of Ae2
and Ae2e2 on the measurement error may be noticed. Also the errors for other optical
constants behave similarly. The value Ae2le2 may be estimated to be 10%, 5% and 1%
for AR amounting to 1%, 0.5% and 0.1%, respectively. The regions, in which €2 is
close to zero and Ae2le2 reaches very high values, are neglected. It is worth noticing that
Ae2/e2 has a distinctly visible minimum (of relatively small values) between two princi-
pal maxima depending on e2(E).

The results show that both the components in egs. (1a) and (Ib) are of the same order
within the whole measurement range. This means that the immediate influence of the meas-
urement error zl/?as well as its indirect influence through 2<9™s, thus through A©, on
the final value of the calculation error are comparable.

From the comparison of the relative errors of the determined optical constants pre-
sented in Fig. 2, it follows that the particular optical constants “react” in different way
to the measurement error. The complex coefficient of dielectric permittivity is, in general,
determined less accurately than the complex refractive index.

Fig. 2. Relative errors of
optical constants of GaAs
Ael (E)/el (E),Ae2(E)/e2(E),
An(E)/n(E), Ak(E)/k(E) ob-
tained under assumption
that the absolute error of
reflection coefficient meas-
urement amounts tol°/0.The
optical constants have been
calculated with the help
of Roessler method from
the reflection spectrum for
GaAs given in the interval
0-10 eV

The further analysis of measurement errors of the optical constant determination
indicates a slow increase of these errors with the broadening of the measurement interval.

3. Calculation errors

At the beginning a method of determining &2, i.e., a method of numerical calculation
of the integral presented by the formula (2b) in the part 111 of this work [3], will be given.
The measurement interval (Ea, Eb) is written down as a sum of intervals of the form (Et—A,
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Ei+A), where Et changes from Ea+A to Ea -A, each 2A. Hence
"
INR(X) _ Bl
J 2 HTIAP
E,-A

Next, the function In R(E) obtained from measurements is approximated in the segment
(Et—A, E(-\-A) by a straight line, which reduces the problem to solving the system of
equations:

(E-A)al+b, = \nR(E-A),
(Et+A) ai+bi =In
The formula (2) takes the form
E-A)2-E2 (E+A)2-E 2
Oi(E)=i ~ |afn (e~ray-e2 7" (E-A)2E?2 “)

where £# £ ,+/1 for each i.

The integrating subroutine has been checked for several simple functions, for which
the integral (2) may be calculated analytically. The errors oscillated from 10 4o/oto 1°/0,
with the exception of regions where 0 2 was close to zero. However, this is by no means
a good way of estimating the calculation error for this concrete case.

It should be noticed that the reflection spectrum is given in a discrete way and the run
of the R(E) curve between the measurement points is known. It seems to be reasonable
to assume that within those rather narrow regions the R(E) has no extremes. This results
in a simple method of numerical integration, which allows to determine the error A&f10
A division of the measurement interval Ea= Ea< E2... < Et< ... < En—Ebis made
so that EXi E2, ..., En be the measurement points, and it is assumed that R(E) = R(E()
or R(E) = R(Ei+1) along the segment (Eif Ei+1). The maximal value of 02, i.e.,, 0“ax,
and minimal value of 02, i.e., may be now calculated from the following relations

InP(jc)

E2x2 &% (2

02(E)=-P

©)

1
er(iJ:&IZZiimax

o 5)
i ”_
0f(E)= infl(Ei+1H 1},
where
(E+E"XE-E;)
At=In
(P-Pf+1)(P+Pf)
Now, it remains to determine 0 2 and AO&c
02=+(0™ *+0?n), (6)
AOflc=-i (0™x-0 fn). (7)

7 — Optica Applicata XI1/1
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Clearly, the difference between 0 2 calculated according to (4), and 0 2 determined from
the formula (7) for the same density of the measurement points is less than zI0&ic.

As it follows from the results, the absolute error A 67dc (formula (7)) is approximately
directly proportional to A, (A —Ei+1—Ei), i.e., to the distance between the two succes-
sive measurement points. A 0 flc exhibits also a small increase when the measurement in-
terval is subject to extension.

The condition AG6fflc  AO™ess requires that for the given AR the measurements
be sufficiently dense. For the values of AR used in practice the required measurement
density may be easily achieved. The fulfilment of the said condition in a concrete case
of reflection spectrum of Zn3P2 (optical constants of Zn3P2 will be more accurately dis-
cussed in the part Y of this work [13]) for AR — 1% and A = 0.04 eV, is illustrated in
Fig. 3.

Fig. 3. Relative errors 0 2 caused by the
measurement error AR (amounting to
1°/0) zI0*“eas, and by the error due to

discrete measurement of reflection coef-
ficient in 0.04 eV steps, A@"alc. The cal-

culations have been performed for the
reflection spectrum of Zn3P2 given in
E@EV)-—-- » the interval 1.20-5.4 eV

The calculation error is connected also with determination of 0t and <%, i.e., with
determination of the contributions to 0 from the regions of low-and high-energy extra-
polation. Here, simple manipulation, like summing the suitably large number of com-
ponents in the series in the formula (6) [3], suffices to make the calculation error in these
cases much less than AQ0™ess.

4. Extrapolation errors

The extrapolation of the reflection curve outside the final measurement points is also an
essential source of errors. Here, the errors due to application of a concrete extrapolation
method (which is essentially a set of assumptions and a calculation algorithm for extra-
polation parameters) as well as the errors due to nonuniqueness of the extrapolation
method may be distinguished.

The latter type includes the error caused by the arbitrariness of selection of some par-
ameters for the given extrapolation method. The said spread of results increases with
the increase of energy when the zeroing condition for 0 below the absorption edge is em-
ployed. This is so, for instance, in the Philipp-Taft method (see Section 2, in paper [3]),
when the exponent A is chosen arbitrarily from the interval (—4,0) and Ef is determined
from the condition of zeroing of 0 in the least-square sense within the region of transpar-
ency (Fig. 4). The described nonuniqueness may be reduced significantly at the expense
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of some complication of the given calculation method. Thus, the variant of the Philipp-
Taft method mentioned above should be modified to enable A to be determined uniquely
by taking the maximal value of Ef . Such a modification of the method is not always pos-
sible, since often the additional conditions to be imposed on the extrapolation parame-
ters are difficult to formulate.

A

Fig. 4. Estimation of the relative error Ae2le2 for the

Philipp-Taft method following from the arbitrary choice

. ; of the parameter A (see text). Calculations were carried

0 D 2 0 40 ' 50 60 out for the reflection spectrum for GaAs in the inter-
E/Eb()------» val (0, 25.4) eV

In the analysis of the error due to nonuniqueness of the extrapolation method, the at-
tention should be also paid to the error caused by the fact that the quantities used are
already loaded with an error. Here, the zeroing condition for 0 (mentioned many times
above) in the region of transparency should be recalled in the first place. When knowing
6*!(is)and 0 2(E) the extrapolation parameters are determined so that 0 3(E) — —0 1 (is)
—0 2{E) for E < Eg. The fact that 0 3 is less sensitive to the values of extrapolation pa-
rameters in the transparency region (the latter being usually positioned at a significant
distance from the extrapolation region) than in higher energies, is very disadvantageous.
Thus, even small calculation errors for 0 t and 0 2 may cause such changes in the determin-
ed parameters that essential divergences in the determined optical constants may occur
for higher energies.

The error discussed above may be reduced by increasing the accuracy of measurement
or by slight modification of the calculation method.

The error caused by the choice of a concrete extrapolation method creates much grea-
ter problem. Here the difficulty is due to the fact that the behaviour of the reflection
spectrum outside the end measurement point is known only in very general terms. It is
well known that in this region the reflection coefficient is small and that some structures
connected with high energy transitions may appear. Besides, the reflection coefficient must
diminish like E~* for high energies, as it follows fromthe general principles. This assumption
admits a very great variety of possible extrapolations. It seems also that the extrapola-
tion consistent with reality will differ significantly from the simple models of the type
R(E) —BEA. Hence, the chosen extrapolation reflects not so much the real behaviour
of R(E) for high energy but it rather enables the fulfilment of the basic condition, i.e.,
that of zeroing of O in the transparency region. It may be easily imagined that many ex-



100 K. Jezierski et al.

trapolations may fulfil this condition in a satisfactory way. The degree to which the esti-
mated optical constants depend upon the concrete form of extrapolation will increase
with the increasing energy. In order to estimate the error of the extrapolation method
produced in this way, the knowledge of all the correct extrapolations, i.e., the extrapola-
tions fulfilling satisfactorily the basic conditions given above, seems to be necessary.

Fig. 5. Relative change in the imaginary
< part of the complex dielectric permitti-
vity Ae2/e2 caused by reduction of the
measurement range to 10 eV (....) and
to 5 eV (oooo0) for the SKK method
(a) and that of Roessler (b). The test
has been carried out for the reflection
spectrum of GaAs given in the interval

b BeV)— » (0, 25.4) eV

One of the estimation methods used for extrapolations consists in gradual reduction
of the measurement range for the benefit of the extrapolation region. In this case, the small-
er are the divergences of the optical constants the better the calculation method used [14].
Such tests have been carried out for the Roessler method (Section 3.1, part 1 [1]), and
the SKK method (Section 2, part 11, [2]). The spectrum of reflection for GaAs in the re-
gion 0-25.4 eV [4] has been taken for calculations. Next, the upper bound of this range
was reduced to 10 eV and to 5 eV, respectively. The relative change of e2 during this pro-
cedure is presented in Fig. 5. It may be seen that the SKK method is less sensitive to the re-
duction of the measurement region than the Roessler method. It seems that this may be a
premise to the statement that the error is smaller for the SKK method.

In order to verify the results of optical constants and also to estimate the method of
calculation (to some extent) the rules of summation may be used, which will be discussed
in the next Section.
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5. Summation rules

For the spectral dependences of optical constants as well as for the functions of these
constants a number of relations may be written in which the knowledge of the optical
constants for high energy region is exploited. These dependences are based on the dis-
persion relations and bear the common name of summation rules. The examplified de-
rivation (according to the [15]) of one of the most known summation rules is given in
the Appendix.

The high versality of the summation rules may be illustrated by the following list.
In the formulae the notations used commonly for complex reflection coefficient r — VRe'6
complex refractive index h = n+ik, complex dielectric permittivity e = el+ is2 and also
plasma energy Ep have been employed. The relations will be given in the form valid
for uniform and isotropic semiconductor:

I xe2(x)dx =

A xe2(x)dx . (8)
®
I xk(x)dx =~Ep, ©
0 4

®

J [«(x)-1]i/x = 0, (10)
0

®
6 [*i(*)—1]«2* = 0, (11)
®

(J) xk(x) [h(*)-11 = 0, (12)
+®

J x2m n{x)-\]mdx = (-\)n2-minEIm, m > 1, (13)
—@

+®

J x2"-1[e(x)-1fdx = (- DwinE@m m >1, (14)
—@

()]

J [n2(x)—k2{x)—2/z(x)+1] dx = 0, (15)
0

®

6 [»(*)-1] {[n(*)-1]2-3*2W dx} = 0, (16)
®

j XR(x) sin 20(x)dx —O0, 17
0

@

J R(x)cos 20 (x)dx = 0. (18)

0
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The derivation and discussion of the above formulae may be found in literature and in
particular: the formulae (9) and (10) in [16], the formula (1) in [17], the formulae (12)-
(14) in [18] the formulae (15) and (16) in [19] and (17) and (18) in [20].

After having calculated the optical constants from the dispersion relations the sum-
mation rules may be used to verify the results obtained. The rules (8)—11) are especially
important, since they enable to test each optical function separately, moreover, there are
no parameters in the egs. (10) and (11) the knowledge of which would be necessary. Such
integrals like (13) and (14) or (8) and (9) are employed, but more frequently to determine
the plasma energy than to test the results of calculation and, speaking more strictly, to
find the effective number of electrons included in Ep as a function of the upper limit of
integration (see also the Section 5, part 11 [2]). The relations (15) and (16) are very con-
venient in applications, since the integrand diminishes quicker (like x~2 and x~4 succes-
sively) than in other relations. Thus, it may be expected that the egs. (15) and (16) will
be satisfied with high accuracy even for not too wide integration intervals, provided that
the proper calculation method is applied.

Unfortunately, there exist no summation rules that might be used to direct verifica-
tion of the extrapolation of the refractive coefficient. The reason for this is the fact that
In R(E) = 0(In E), when E -> 0o. However, the rules of summation for refraction coeffi-
cient and the phase changes during the reflection described by the formulae (17) and (18)
may be derived in a simple way, but these relations seem to be of small effectiveness in
practice.

Very rarely the summation rules play a dominant part in the calculation methods of
optical constants. An interesting exception is the method suggested in 1975 by Eris
and Stevenson in [21]. This is a variant of the Philipp-Taft method, in which the par-
ameter of extrapolation (exactly the exponent A from the relation R(E) = R(EB(EJEDA
is chosen so, that the summation rule given by (12) are fulfilled with the following accu-
racy

140 eV
(19)
0
Thus, the summation rules may be very helpful in determining the optical constants
with the help of dispersion relations.

6. Conclusions

The final results of measurements and the calculations are loaded with the errors coming
from many sources. The considerations concerning the measurement, calculation and ex-
trapolation errors lead to important conclusions. It turns out that the least contribution
to the global error is due to calculation error. When neglecting this error a coarse ana-
lysis of errors may be made but it should be remembered that this is not allowed when
a more accurate analysis is needed or when relatively accurate measurements are available.

The main role is played by measurement and extrapolation errors. They differ essen-
tially due to the fact that the influence of the measurement errors on the final results may
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be determined very precisely, while in principal, the same cannot be made with the extra-
polation error. In estimation of this error there appears a difficulty caused by the fact
that the magnitude of the difference between the assumed extrapolation curve and real
reflection coefficient in the extrapolation regions is unknown. On the other hand, this
difference affects the determination of optical constants and this influence increases with
energy. Hence, the search of a method enabling an accurate estimation of the error of
the extrapolation method seems to be justified.

Thus, the error of optical constants is in practice defined mainly by the error of the re-
flection coefficient measurements. The fact that the error of optical constants reaches
high values justifies the attempts to determine the measurement error in a most precise
way. The dependence of the measurement error upon the energy should be taken into
account and also this error should be minimized in a reasonable way.

Finally, there remains a large group of errors connected with the fact that the measu-
rement results are processed basing on a very simple physical model. This group in-
cludes the errors caused by the formulae valid for normal light incidence on the sample
(while in reality the incidence angle amount to 5-10degrees ofarc)as well as the errors caused
by the deviations of the real semiconductor crystal from uniformity and isotropy. It is
assumed that all these errors are much less than the errors mentiones above.

Appendix

The main assumption accepted to derive the summation rules for optical constants is that the response of
the medium to the electromagnetic field of high frequencies is similar to the reaction of the free electron
gas, i.e., that the Drude formula is valid

e‘@'—f‘-@l 11--'%'13 (A1)

47th2Ne2 . .
where EpZ—(pr)Z: ———————————— , N —electron concentration in crystal, m —mass of free electron,

The dispersion relation between  and e2 has the form

ori- 2o )
—1= — X .
(£) n J x2—E2 (A2)

Let Ec be the cut-off energy, above which there is no absorption. Then e2(E) = 0 for E > Ec. If et(E) is
determined for E~> Ec, then x in the denominator of the first integral in the expression

n 6 x2-E 2 n é x2-E 2 (A3)

may be neglected. The second integral disappears, since e2(E) = 0 for E > Ec. Hence,

gi(E)= 1 2 CZ x, E> E
i(E) = e B xe2(X)cfx, c (A.4)
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By taking account of the formulae (A.l) and (A.2) the known summation rule may be obtained for e2(E)

()
f xzi{x)dx = * B> (A5)
0

where the upper integration limit is extended to infinity since f2(E) disappears for E > Ec.
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OnpefeneHre ONTUYECKMX KOHCTAHT  MOJYMNPOBOAHMKOB n 7n3P2 ¢ MOMOLLLHO
cooTHoLeHns Kpamepca-KpoHura

Yactb IV. AHaiu3 TOYHOCTM MPUMEHAEMbIX METOLOB pacyéTa

HacTosiwaa paboTa COCTOMT U3 MATU YacTeil 1 MOCBSLWEHA rNaBHbIM 06pa3oM pesynbTaTaM ucciefoBa
HWIA ONTUYECKUX KOHCTaHT Zn3As2 n rn3P2 [ByX COeAVMHEHM Tuna H3-YTr C LUMPOKUM 3HEpreTUYECKUM
WHTepBasioM. Pe3ynbTaToM aHa/in3a CYLLECTBYIOLLEro [0 HACTOALLEro BPEMeHU COCTOAHUSA B 06/1acTu
npvMeHeHns Metofa aHanusa Kpamepca-KpoHura (KK) ansa KomnaekcHoro KosdduuneHTa oTpaxeHus
oKasanacb Heob6Xx04MMOCTb pPasBuUTUA paboT B AOMOMHUTE/IbHBIX Harpas/ieHWsAX, ONUCaHHbIX B TPEX nep-
BbIX YacTsx. B | yacTu npefcTaBneH KPpUTUYECKUIA aHaIM3 NPUMeHsieMbIX [0 HACcTOALLEro BPeMeHN MeTo-
0B pacyéTa, OCHOBaHHbIX Ha [UCMEPCUMOHHLIX coefuHeHUsax Kpamepca-KpoHura. O6CyXfeHbl Takxke
MeToAbl pacyéTa OMTUYECKMX KOHCTaHT, B KOTOPbIX He ucrnonb3yetca uHterpan KK. Bo Il u 111 vactax
onucaHbl NpefnoXXeHNs 3PHEKTVBHBIX YCOBEPLLEHCTBOBaHW MeTOAOB pacyéTa, OCHOBaHHbIX Ha Mpu-
MeHeHun uHTerpana KK. [ononHuTenbHO B 06eMX 4YacTAX MNpeAcTaBrieHbl pesynbTaTbl pacyéta ans
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CaAB, KOTOpbIA nocnyxun (B Kayectse NosynpoBOAHWKA CO CPABHUTENIbHO XOPOLLO W3BECTHbIMWU ONTU-
YECKVMU CBOICTBaMW) A1 MPOBEPKU YCOBEPLLUEHCTBOBAHHbIX HaMW MeTOAOB pacuérta.

AHanus owmnboK M TOYHOCTU MeTOAOB pacyérTa OYeHb NOAPOGHO MPOBOAUTCA B HacToswen (1V)
YyacTu paboTbl. PacCMOTPeHbl BO3MOXHbIE MCTOYHUKM OLLNGOK, & TaKXKe OLIeHEHO UX B/IMSIHWE Ha KOHEYHbI
pesynbTat pacuérta. Wnnwoctpauuein Ans NpoBef&HHON [UCKYCCUM ABNAKOTCA pesy/nbTaTbl, MOyYeHHble
ona BaAB, a Takxe rn3pP2.

MATan yacTb COAEPXMUT pe3ynbTaTbl pacyéTa ONTUYECKUX KOHCTaHT Zn3As2 n 7n3P2, Npon3BeaéH-
HbIX C MOMOLLbIO YCOBEPLUEHCTBOBAHHbLIX METO[0B pacyéTa, a TakKe Ha OCHOBE HalMX pesynbTaToB
N3MepeHWii ONTUYECKUX CBOWCTB 3TUX MOMYNPOBOAHMKOB.



