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Shear strain mapping from moiré interferometry
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Principles of the new optical method for determining shear strain contours in the object under load 
investigated by moiré interferometry are presented. In the dirfect approach not requiring the dense 
fringe maps of in-plane displacements, the lateral shear interferograms of all four diffraction orders 
of the specimen grating are used. When properly overlapped and spatially filtered they give the 
map of yxy.

1. Introduction

Moiré interferometry is a high sensitivity technique for studying in-plane 
displacements of deformed bodies [1]. Theoretically the sensitivity higher by two 
orders of magnitude with comparison to the classical moiré method [2] can be 
obtained. This is possible due to the use of high frequency reflective type diffraction 
grating fixed to the specimen. The cross-type grating is illuminated by two 
perpendicular pairs of plane wave front beams. Each pair consists of two beams 
impinging symmetrically on opposite sides of the specimen grating normal at an 
angle equal to the first order diffraction angle. The +1 diffraction order from one 
illuminating beam and the —1 order of the other beam propagate along the 
specimen grating normal. Wavefront warpages of the two beams, because of line 
deformations of the specimen grating introduced by the load, are mutually 
conjugate. On the other hand, the wavefront warpages caused by out-of-plane 
displacements are the same in both interfering beams. They mutually subtract. The 
fringes obtained give a contour map of in-plane displacements with half a period 
sensitivity.

When the incidence angles of the illuminating beams are not exactly tuned to the 
first order diffraction angle of the specimen grating, the carrier fringes are 
introduced. When they are dense the interferograms of moiré interferometry method 
correspond to specimen grating lines in classical moiré method [1], [2]. Therefore, 
all known methods for obtaining the derivatives of in-plane displacements 
corresponding to normal strains ex and ey can be applied to the moiré interferometry 
patterns (for example, for the list of references see [3]). The same remark concerns 
the methods for determining the shear strain contours [4]-[8].

In this paper, the shearing interferometry approach for generating the shear 
strain maps [8] will be extended to moiré interferometry configuration. The
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principles of a direct method without registering the in-plane displacement 
interferograms will be presented.

Although the lateral shear interferometry was already applied to moiré 
interferometry configuration for giving the derivatives of in- and out-of-plane 
displacements [3], [9 ]-[ ll]  its use for mapping the shear strain contours is new. The 
unique way of overlapping the interferograms and their spatial filtering leads to the 
whole field map of the shear strain distribution.

2. Description of the method

Figure 1 shows schematic representation of the optical configuration. One pair of 
plane wave front beams with propagation directions Lx and Rx in the incidence plane 
xz illuminates the cross-type specimen grating SG. They produce the interferogram 
representing the in-plane displacement u(x, y). The other pair with propagation

SG

Fig. 1. Optics of the moire interferometry method. Objectives LI and L2 image the specimen grating plane 
SG in the observation plane OP. SG is illuminated by two pairs of plane wave front beams with directions 
Lx, Rx, Ly, Ry appropriately tuned to the grating first order diffraction angle. In general, single objective 
imaging optics can be used

directions L y and Ry in the plane yz produces the interferogram of in-plane 
displacement v(x, y). For example, when the directions L x and Rx are at the angle 
equal to the first order difraction angle of SG, the amplitude of the two interfering 
diffraction orders in the observation plane OP can be represented as

E{x, y) = exp j i | ^ u ( x ,  y) + kw(x,y) J  j  + exp j i
2n . ,  , .

— j« ( x ,  y) + kw(x
4 (1)

where d denotes the period of specimen grating SG, u(x, y) is the in-plane 
displacement along the x direction, w(x, y) is the out-of-plane displacement, and 
k = 2tc//1. Amplitudes of both beams have been normalized to unity. The resulting 
interference pattern has the intensity

2tc

/i(x , y) = 2<jl + cos-p2u(x, y) (2)
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and represents the contour map of u(x, y) with half a period sensitivity. Angular 
mismatch of the incidence angle of the illuminating beams results in the tilt angle 
between the interfering diffraction orders. The intensity is

I ^ x ,  y) = 2<l+cos 2u(x, (3)

where 20  x is the angle between interfering beams. Now the information about 
u(x, y) is in the form of the departure of fringes from straightness. When the fringes 
are dense the interferograms can be called the “gratings of displacements”. The 
description of Eq. (3) can be easily extended to the other pair of illuminating beams 
giving the map of v(x, y), i.e.

I 2(x, y) = 2 2 k 0 yy + Y 2v(x, 4 (4)

Under proper conditions the lines of both interferograms are mutually perpendicular 
and have the same average period.

Having the interference patterns ^ (x , y) and / 2(x, y) we can apply any of 
previously reported methods [4]-[8] for generating the map of shear strains

_  du(x, y) dv(x, y)
7xy dy + dx ·

However, in the case of moiré interferometry method we can device another more 
direct method not requiring the “gratings of displacements” u(x, y) and v(x, y). On 
the other hand, extending the optical shearing interferometry approach [8], we 
propose to generate the lateral shear interferograms of each of the diffraction orders 
of SG used in the experiment. They should be dense carrier fringe patterns with line 
deformations proportional to du (x, y)/dy or dv(x, y)/dx. It is necessary to note that 
the diffraction orders of SG in the moiré interferometry configuration carry the 
information not only about the in-plane displacements u(x, y) or v(x, y) but also 
about the out-of-plane displacement w(x, y). Because of that it is important to 
superimpose the “gratings of derivatives” in a special order. The way of conducting 
the experiment is as follows.

All four illuminating beams should be properly adjusted in space to have all four 
first order diffraction beams of SG propagating coaxially along the optical axis, i.e., 
the grating normal. Next, the specimen grating should be separately illuminated by 
each of the illuminating beams. The lateral shear interferogram of the diffraction 
order is then produced in the way described in detail in [8]. Again a linear diffraction 
grating can serve as the beam-splitting and shearing element. It is placed near the 
common focal plane of lenses LI and L2 (Fig. 1). For example, when one of the 
orders of SG carrying the information about u(x, y) enters the imaging optics L1-L2, 
the lines of the beam-splitting grating should be aligned along the x direction, i.e., be 
perpendicular to the lines of the grating being analysed. To ensure the maximum 
contrast of shearing interferograms the spatial filter set in the spatial frequency plane



310 K. P atorski

should transmit +1 and — 1 orders of the shearing grating. It can be easily proved 
that the intensity distributions of the four derivative interferograms can be calculated 
as

U M oc 1 + cos2[ k * ,y  + Ay%

I - tA x .y )X 1 + C O S 2  [ k e ; y - A y 2i

l +iAx, y )o c l+ œ s2 \ke 'xX+AX2l d̂ + éxkd̂ l
y |_ a OX OX J

I _ iAx,y ) o c l + œ J k 0 ' xX- A X% 8̂ + Axkd- ^ ~ \L d dx dx J

where Ax and Ay are the shear amounts along x and y directions, respetively, 20* 
and 2 0 'y denote the tilt angles between the interfering beams.

Let us produce now cross-type gratings DG1 and DG2 superimposing 
interferograms (6) and (8), and (7) and (9), respectively. The multiplicative or additive 
superimpositions can be employed. Next, the structures obtained are inserted in the 
double coherent optical processor (Fig. 2). The first one is located in the front focal

Fig. 2. Double spatial filtering system for producing the map of shear strain yxy from the two 
cross-derivative two-dimensional periodic structures DG1 and DG2. SF1 and SF2 — spatial filters

plane of LI and the second one in the back focal plane of L2 (front focal plane of L3). 
Let us assume that the two openings of SF1 have the coordinates ( + 1*,0) and 
(0, — 1J. Numbers in the parenthesis correspond to the locations of double 
diffraction spots of each two-dimensional structure. A single opening of SF2 will be 
located on the optical axis. In this way, two beam interference pattern is formed in

(6)

(7)

(8) 

(9)
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the observation plane OP. Its intensity distribution is

i(x,y)
! f2 n dv{x,y)

[expi'2b ^ ^ +
U  2n Adu(x,y) 

+  exp — J  —

dw{x,y) 2n 
dx d

, ,dw(x,y)
- k A — -----

dy

A s ^ _ u dw(Xjy)-Vi
dx dx J j

2n dv(x, y) =  |exp ^ 4 _ J „ + exp - i4
2ft dn(x,y) 
d dy

2

= 2^1 + co s^ 4 d
du(x,y) dt;(x,y)~||

. ^  dx Jj
(10)

where d = Ax = Ay. The interferogram obtained gives the map of shear strain yxy 
with the sensitivity 4 times higher than the sensitivity of the moiré of moire method 
[4], [7].

Other combinations of the openings in spatial filter SF1 are possible, for example, 
( + l x, — ly) and ( — 1*, + ly). They give the same results but with reduced average 
intensity in the observation plane.

3. Conclusions

Application of the lateral shear interferometry to all four diffraction orders of the 
specimen grating utilized in moiré interferometry method leads to four separate 
fringe patterns. When properly grouped, overlapped and spatially filtered in the 
double coherent optical processor the contour map of the shear strain yxy in the 
object under load can be obtained.

The experimental verification of the principles given will be presented elsewhere.
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Изготовление карт деформаций во время сдвига методом мори
Даны принципы нового метода для определения угла сдвиговой деформации нагружаемого 
конструкционного элемента, исследуемого при помощи интерференционного метода мори. 
В непосредственном подходе, не нуждающемся в интерференционных полосах с высокой 
пространственной полосой перемещений в плоскости, изготовляется интерферограммы с 
поперечным смещением волнового фронта для всех четырёх порядков дифракции деформирован­
ной сетки. В результате их соответствующего наложения и фильтрации пространственных частот 
получают карту угла сдвиговой деформации уху.


