Optica Applicata, Vol. XVII, No. 4, 1987

Shear strain mapping from moiré interferometry
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Principles of the new optical method for determining shear strain contours in the object under load
investigated by moiré interferometry are presented. In the dirfect approach not requiring the dense
fringe maps of in-plane displacements, the lateral shear interferograms of all four diffraction orders
of the specimen grating are used. When properly overlapped and spatially filtered they give the

map of YX.

1. Introduction

Moiré interferometry is a high sensitivity technique for studying in-plane
displacements of deformed bodies [1]. Theoretically the sensitivity higher by two
orders of magnitude with comparison to the classical moiré method [2] can be
obtained. This is possible due to the use of high frequency reflective type diffraction
grating fixed to the specimen. The cross-type grating is illuminated by two
perpendicular pairs of plane wave front beams. Each pair consists of two beams
impinging symmetrically on opposite sides of the specimen grating normal at an
angle equal to the first order diffraction angle. The +1 diffraction order from one
illuminating beam and the —1 order of the other beam propagate along the
specimen grating normal. Wavefront warpages of the two beams, because of line
deformations of the specimen grating introduced by the load, are mutually
conjugate. On the other hand, the wavefront warpages caused by out-of-plane
displacements are the same in both interfering beams. They mutually subtract. The
fringes obtained give a contour map of in-plane displacements with half a period
sensitivity.

When the incidence angles of the illuminating beams are not exactly tuned to the
first order diffraction angle of the specimen grating, the carrier fringes are
introduced. When they are dense the interferograms of moiré interferometry method
correspond to specimen grating lines in classical moiré method [1], [2]. Therefore,
all known methods for obtaining the derivatives of in-plane displacements
corresponding to normal strains exand ey can be applied to the moiré interferometry
patterns (for example, for the list of references see [3]). The same remark concerns
the methods for determining the shear strain contours [4]-[8].

In this paper, the shearing interferometry approach for generating the shear
strain maps [8] will be extended to moiré interferometry configuration. The
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principles of a direct method without registering the in-plane displacement
interferograms will be presented.

Although the lateral shear interferometry was already applied to moiré
interferometry configuration for giving the derivatives of in- and out-of-plane
displacements [3], [9]-[I1] its use for mapping the shear strain contours is new. The
unique way of overlapping the interferograms and their spatial filtering leads to the
whole field map of the shear strain distribution.

2. Description of the method

Figure 1 shows schematic representation of the optical configuration. One pair of
plane wave front beams with propagation directions Lx and Rx in the incidence plane
xz illuminates the cross-type specimen grating SG. They produce the interferogram
representing the in-plane displacement u(x, y). The other pair with propagation

SG

Fig. 1. Optics of the moire interferometry method. Objectives LI and L2 image the specimen grating plane
SG in the observation plane OP. SG is illuminated by two pairs of plane wave front beams with directions
Lx, Rx Ly, Ry appropriately tuned to the grating first order diffraction angle. In general, single objective
imaging optics can be used

directions Ly and Ry in the plane yz produces the interferogram of in-plane
displacement v(x, y). For example, when the directions L x and Rx are at the angle
equal to the first order difraction angle of SG, the amplitude of the two interfering
diffraction orders in the observation plane OP can be represented as

E{x, ¥) = expjil®u (X, y)+ kw(xy)dj +expji —Je (X, y)+kw(x 4 @)

where d denotes the period of specimen grating SG, u(X,y) is the in-plane
displacement along the x direction, w(x, y) is the out-of-plane displacement, and
k = 2«¢/1 Amplitudes of both beams have been normalized to unity. The resulting
interference pattern has the intensity
2t
li(X, y) = 2<jl + cos-p2u(Xx, Y) )
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and represents the contour map of u(x, y) with half a period sensitivity. Angular
mismatch of the incidence angle of the illuminating beams results in the tilt angle
between the interfering diffraction orders. The intensity is

I"x, y) = 2<l+cos 2u(x, (©)]

where 20x is the angle between interfering beams. Now the information about
u(x, y) is in the form of the departure of fringes from straightness. When the fringes
are dense the interferograms can be called the “gratings of displacements”. The
description of Eqg. (3) can be easily extended to the other pair of illuminating beams
giving the map of v(x,y), ie

12(x, y) = 2 2K0y + Y 2v(x, 4 @

Under proper conditions the lines of both interferograms are mutually perpendicular
and have the same average period.

Having the interference patterns ~(x, y) and /2(x,y) we can apply any of
previously reported methods [4]-[8] for generating the map of shear strains

_ du(x,y) dv(x,y)
™y dy + dx

However, in the case of moiré interferometry method we can device another more
direct method not requiring the “gratings of displacements” u(x, y) and v(Xx, y). On
the other hand, extending the optical shearing interferometry approach [8], we
propose to generate the lateral shear interferograms of each of the diffraction orders
of SG used in the experiment. They should be dense carrier fringe patterns with line
deformations proportional to du(x, y)/dy or dv(x, y)/dx. It is necessary to note that
the diffraction orders of SG in the moiré interferometry configuration carry the
information not only about the in-plane displacements u(x, y) or v(x, y) but also
about the out-of-plane displacement w(X, y). Because of that it is important to
superimpose the “gratings of derivatives” in a special order. The way of conducting
the experiment is as follows.

All four illuminating beams should be properly adjusted in space to have all four
first order diffraction beams of SG propagating coaxially along the optical axis, i.e.,
the grating normal. Next, the specimen grating should be separately illuminated by
each of the illuminating beams. The lateral shear interferogram of the diffraction
order is then produced in the way described in detail in [8]. Again a linear diffraction
grating can serve as the beam-splitting and shearing element. It is placed near the
common focal plane of lenses LI and L2 (Fig. 1). For example, when one of the
orders of SG carrying the information about u(x, y) enters the imaging optics L1-L2,
the lines of the beam-splitting grating should be aligned along the x direction, i.e., be
perpendicular to the lines of the grating being analysed. To ensure the maximum
contrast of shearing interferograms the spatial filter set in the spatial frequency plane
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should transmit +1 and —1 orders of the shearing grating. It can be easily proved
that the intensity distributions of the four derivative interferograms can be calculated
as

U M ocl+cos2[k*,y +Ay% (6)
I-tAX.y)X 1+C0OS2 [kKe;y-AyR )
yI+iAx,y)ocI+ch_SZ\ke'xX+216\X12o)g} +éxl&i‘ ] I )
I_iAx,y)ocI+cEJkO'xX—gX%dXB +Axé<xd’\J~ \ 9

where Ax and Ay are the shear amounts along x and y directions, respetively, 20*
and 20Y¥ denote the tilt angles between the interfering beams.

Let us produce now cross-type gratings DG1 and DG2 superimposing
interferograms (6) and (8), and (7) and (9), respectively. The multiplicative or additive
superimpositions can be employed. Next, the structures obtained are inserted in the
double coherent optical processor (Fig. 2). The first one is located in the front focal

Fig. 2. Double spatial filtering system for producing the map of shear strain YX/ from the two
cross-derivative two-dimensional periodic structures DG1 and DG2. SF1 and SF2 — spatial filters

plane of LI and the second one in the back focal plane of L2 (front focal plane of L3).
Let us assume that the two openings of SF1 have the coordinates (+ 1*,0) and
(0, —1J. Numbers in the parenthesis correspond to the locations of double
diffraction spots of each two-dimensional structure. A single opening of SF2 will be
located on the optical axis. In this way, two beam interference pattern is formed in
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the observation plane OP. Its intensity distribution is

) ! f2n  dv{x,y) dw{x,y) 2nAs ~ _ u dw(Xjy-Vi
i(x,y) ppi'2b N A+ dx d dx dx Jj

+ exp uo_en ﬁdu(_x,y) - k’A’dva—(—’Y—)
dy
2
= |exp” 42" aviey) exp -i4 thdn((;;,y)

du(x,y) dt;(x,y)~l

n dx Jj
where d = Ax = Ay. The interferogram obtained gives the map of shear strain yxy
with the sensitivity 4 times higher than the sensitivity of the moiré of moire method
[4], [7].

Other combinations of the openings in spatial filter SF1 are possible, for example,
(+1x —ly) and (—1* + ly). They give the same results but with reduced average
intensity in the observation plane.

= 2"l + cos™4d (10)

3. Conclusions

Application of the lateral shear interferometry to all four diffraction orders of the
specimen grating utilized in moiré interferometry method leads to four separate
fringe patterns. When properly grouped, overlapped and spatially filtered in the
double coherent optical processor the contour map of the shear strain yxy in the
object under load can be obtained.

The experimental verification of the principles given will be presented elsewhere.
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M3roToBneHve KapT Aetopmauunii Bo Bpemsi CABUra MeToAoM Mopu

[JaHbl MpUHLMMBLI HOBOrO MeTOAa A/Nsi OMpeaeneHns yrna CABWUFOBOW AeopMauun Harpy>aemoro
KOHCTPYKUMOHHOIO 3/1EMEHTa, WCC/efyemMoro npy MOMOWM WHTEP(PEPEHLMOHHOr0 MeToAa MOpMU.
B HenocpeacTBEHHOM TMOAXOAE, He HYXAAlOLIEMCS B MHTEP(EPeHUMOHHbIX M0/Iocax C BbICOKONA
NPOCTPAHCTBEHHO MOMOCOM MepeMeLleHniA B MIOCKOCTM, M3rOTOBASIETCS MHTepgeporpamMmbl ¢
MonepeyHbIM CMELLLEHNEM BOJTHOBOTO (hPOHTA A/1s1 BCEX YETbIPEX MOPSAKOB ANGPaKLMM AeOPMUPOBAH-
HOWi CeTKW. B pesynibTaTe MX COOTBETCTBYIOLLETO HA/IOXEHUS U (PUAbTPaALMM NPOCTPAHCTBEHHbIX YacToT
nonyyaloT KapTy yrna CABWroBoi fecopmauun YXy.



