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Two-dimensional phase decoding from bounded 
fringe patterns by using the Fourier-transform method
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An efficient and accurate modification of the Fourier transform method for phase reconstruction 
from a given interferogram is described. In particular, a simple technique of fringe supplementing in 
the cases when the analysed area is neither square nor rectangle is proposed. Typical numerical 
experiments show that the phase retrieval process can be significantly improved, even with small 
microcomputer systems.

1. Introduction

Among the known methods of fringe pattern analysis, the Fourier transform method 
seems to be the best one for the patterns recorded photographically [1]. All we need 
when employing the above technique is an optical projection system with distortion 
properly corrected, and a microcomputer which communicates a scanning photo­
detector system (i.e., a CCD camera nowadays). Such equipment is sufficient for 
decoding the phase distribution from a single interferogram, provided that the fringe 
intensity profiles are nearly sinusoidal, and that the Fizeau reference fringes are 
introduced with proper tilt of interfering wavefronts.

However, the Fourier method has also some substantial disadvantages. Firstly, in 
many cases a great number (such as 1024 or even greater) of intensity samples along 
a single line is required to achieve good accuracy of decoded phase values, and this 
makes the processing procedure surprisingly slow, even when both the FFT 
algorithm written in machine code and fast microhardware is applied. In conse­
quence, the method is not always useful for real-time processing and, what is also 
important, large amount of memory is needed for two-dimensional (2-D) analysis. 
Secondly, the inherent property of 2-D FFT algorithm is that it uses square, or 
rectangular areas of integration, whereas typical optical fringe patterns are bounded 
with circle; as a result, significant errors in decoded phase values can be created.

In this work, we present a remedy to the above difficulties. Corresponding 
theoretical considerations are given, and experimental results that confirm their 
usefulness are demonstrated.
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2. Algorithm for 2—D analysis of interferograms

To minimize the processing time as well as the memory required, the 2-D analysis of 
interferograms is carried out with the aid of 1-D FFT algorithm. This simple trick 
enables one to analyse only a selected part of the pattern (in fact, the number of lines 
to be processed may be arbitrary). The analysis of intensity distribution is therefore 
performed sequentially (line-by-line), and the results can either be reduced or 
transferred successively to an external memory. That is why such an algorithm can 
be easily implemented even in small microcomputer systems. The entire procedure 
consists of the following consecutive steps:

A. Data acquisition.
B. Aperture contouring.
C. Fringes supplementing.
D. 1-D phase decoding.
E. Correction of both constant and line components for each line.
F. Parametrization of the decoded phase distribution.
G. Graphical display of the phase surface.
At first the intensity samples are transferred to the microprocessor unit; 

alternatively, in the case when the amount of data is too large to accomodate the 
microcomputer’s RAM, appropriate transfers to the floppy disc are carried out. 
Next, the accepted data are analysed in order to establish the shape and dimensions 
of the effective area of the pattern under study. One can either restrict the area in 
advance, or choose a piece of it for further processing. As it was mentioned earlier, 
a part of the processed area is free from fringes, and this usually indroduces 
numerical errors in the restored phase distribution. To minimize these errors, 
a procedure of fringe supplementing with appropriate sinusoid is applied [2]. 
(A method of effective fitting of the sinusoid will be described in detail in the next 
Section of the present paper).

The next of the whole numerical procedure is the 1-D phase decoding from the 
fringe pattern. Consecutive scanning lines that consist of 2N intensity samples (256 
samples at least) are processed indepedently, line-by-line, by using the Takeda’s 
method [3]. After the sequential processing, both the piston and tilt terms in the 
phase function computed for successive lines are properly corrected (note that the 
phase function may have contained different constant components for different lines). 
The next step is to compose the 2-D phase surface from its successive cross-sections 
(i.e., from successive scanned lines). After the composition, the phase distribution is 
parametrized: in particular, such useful parameters like peek-to-valley deviation and 
RMS deviation of the wavefront are determined. Finally, the 3-D plot of the phase 
distribution is displayed on a graphical monitor.

3. Fringe supplementing technique

As is well-known, the fringe analysis technique based on the Fourier transform 
method described by Takeda et al. [3] gives the possibility to reconstruct the phase 
coded in a pattern cross-section by using 2 N intensity samples of interferogram.
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However, when some of the samples have non-zero values, the corresponding phase 
error increases rapidly as the number of samples containing useful information 
decreases. Typical interferograms are bounded with circular apertures. To avoid 
errors in the retrieved phase, a square aperture inscribed in the circular one is taken 
into computations. In such a case certain amount of information is lost.

To analyse the whole circular area (or another shape), a new algorithm is 
proposed. Line intervals with absence of fringes are supplemented with a properly 
matched sinusoid. Let us assume that the intensity distribution at a given 
cross-section of the interferogram under study is of the form

I(n) = a(n) + 2>(n)cos[w0n+/(n)], n, < n < nr (1)

whdre a(n), b(n) represent the background intensity and the fringe visibility, 
respectively; f(n) is the phase function containing information of interest; w0 is the 
spatial carrier frequency: a{n), b{n), f(n) vary slowly in comparison with the 
variations introduced by w0; n = 1 ,2 ,..., 256; nlt nr denote the ordering numbers of 
samples which describe the range with non-zero values.

The function I (n) has non-zero values within the range bounded from the left side 
by the n,-th sample, and from the right — by the nr-th sample. To obtain 2N non-zero 
samples we add to both sides two periodic functions with parameters w0, a («), b (n) 
similar to proper parameters of the function I (n). When viewed from the left side, the 
function has the form

11 (n) = a, (n) + b,cos(n w0 +/,) (2)

where a,, bt fit the functions /,(«) in scope of contrast and modulation of intensity; 
/,(«) expresses the phase correction, whereas w0 stands for the approximate carrier 
frequency obtained from the analysed intensity distribution. The frequency w0 is 
given by the formula

W0 = ( ¿ m a ,  + A n in  + !)/("/ ~  nr) (3)

where L mitx, stand for the ordering number of maximum and minimum intensity 
of the fringe pattern, respectively. The functions at (n) and bl(n) are replaced with 
constants in such a manner that intensities /, (n) and /  (n) are equal in the common 
point: namely,

«, =  (/m + U A  and b, = ( / „ „ - / „ J /2  (4)

where 7max, / min are the values of the intensity in the first maximum and first 
minimum of the fringe pattern, respectively. The phase correction in this point is 
assumed to be

cos/, =  [/(*,)—aj/hf. (5)

According to the above considerations, Eq. (2) becomes

/, (n) = a, -1- 6,cos (n w0)cos/, + sin [n w0 (1 — cos2 /,)1/2] . (6)

In the case when the function I(n) increases at the common point n„ we choose 
the ” sign in the above relationship; if this is not the case, the “ + ” sign is selected.
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Analogous relation is obtained for the function Ir(n), which should be added from 
the right side of the intensity distribution /(«).

In order to estimate the errors of the method, the numerical verification has been 
performed on the base of a theoretical distribution. Figure la shows the analysed 
intensity distribution (n = 256) and its Fourier transform. The phase reconstructed 
from the pattern (see Fig. lb) is spherical and the errors (Fig. lc) obtained by

Fig. 1. Fringe pattern cross-section given by 256 intensity samples: its spectrum (a), the retrieved phase (b) 
and the distribution of the phase errors (c)

comparing the theoretical phase distribution with the reconstructed one has its 
maximum values at the edge of the interval. This is the well-known effect occuring 
due to the limited length of the processed signal. Figure 2 shows the analysis of 
truncated fringe patterns {nl < n 2 < 256) for Fig. 2b and 2a, respectively. It may be 
noticed that the errors of the retrieved phase do not exceed the errors obtained when 
analysing the entire (n = 256) signal (see Fig. 2c). The method of supplementing the 
fringe pattern with a sinusoidal-type signal gives positive results even for a few 
samples. The limit of the sample number results from the necessity to determine the 
carrier frequency w0. However, if a common carrier w0 is assumed for the 2-D 
analysis, the phase may be reconstructed even from a few samples.

After line-by-line processing, the pattern is composed by using the algorithm 
mentioned above: as a result we obtain the 2-D phase distribution that corresponds 
to the circular aperture of interest (see, also, Fig. 3, and note that the phase sign is 
changed there to make the plot more legible). The computational errors over the 
whole circular area do not exceed the values that have been achieved in the case of 
rectangular one.
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Fig. 2. The same as in Fig. 1, except that the number 
of samples is reduced to 30
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Fig. 3. Example of 2-D phase distribution decoded from 
a fringe pattern bounded with circular aperture

4. Conclusions

The numerical procedure described here is useful for phase decoding from fringe 
patterns that are associated with apertures having sharply defined edges. In 
comparison with the commonly employed 2-D Fourier analysis, the technique based 
on line-by-line application of the 1-D discrete Fourier transform has some 
advantages: both running time and memory required for processing can be 
shortened, and a selected piece of the pattern can be only processed, if necessary. The
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sinusoidal supplementing applied over the processed areas that are beyond the 
aperture of the fringe pattern, significantly reduces the numerical errors inside the 
aperture.
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Двуфазовая процедура декодирования фазы из ограниченных полосатых 
образов, использующая метод изображения функции Фурье

Описан способ модификации метода изображения функции Фурье к эффективной и точной 
реконструкции фазовой информации, содержимой в интерферограмме. Особенно описана техника 
дополнения полосок в случае, когда область интерферограммы не ограничена квадратом или 
прямоугольником. Помещены численные результаты, из которых вытекает, что процесс 
декодирования фазы может быть более совершенным, даже в случае применения на небольших 
системах микро-ЭВМ.


