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Examination of linear radiation propagation with 
the method of Laguerre-Gauss function

A. D ubik, J. O wsik, A. Sarzyński

Kaliski Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, 00-908 Warszawa, Poland.

The way of solving a stationary and uniform parabolic equation (describing diffraction of 
radiation) which employs the eigenfunctions of this equation has been described. The cylindric 
symmetry of the beam has been assumed. The effect of the number of the used eigenfunctions on 
the accuracy of the initial condition approximation has been examined. The comparisons of the 
results of the method presented with those obtained by using the difference method are given. The 
described method has been illustrated by two examples: modelling of the laser beam decoherencing 
and the spatial filtering.

1. Introduction

Laser systems used in the research carried out in such fields as thermonuclear 
synthesis, isotopes separation, X-ray lithography etc., should be of relatively high 
power and energy as well as of uniform distribution of the power density across the 
cross-section of the beam and of small phase deformation. The laser system should 
be marked by the high total efficiency, i.e., by the high possible ratio of the output 
radiation energy to the energy supplied from the network. Therefore, the contempo­
rary laser systems comprise many elements such as soft diaphragms, retransmitters, 
spatial filters, Faraday isolators, all kinds of diaphragms, and so on, in order to 
improve the beam quality and to enhance the amplification effectiveness. This results 
in a significant complexity of the high power laser system design, the mathematical 
description of which may be carried out with the use of the numerical methods 
exclusively.

One of such methods applied to the description of the laser channel is the 
difference method. In accordance with the data reported in paper [1] this method is 
not very efficient due to low eigenfrequencies of the algorithm and long computing 
time. The calculations of radiation propagation through space filters is especially 
laborious. For example, the laser system containing 4 space filters and 8 amplifying 
rods requires the computing time of 12 hours (for MERA-400 or IBM PC/XT 
computers) while 80% of that time is needed just for calculation of the radiation 
propagation in spatial filters.

The fundamental reason for which the difference method is still used quite 
frequently is that it requires a relatively small operational computer memory on one 
hand, and that all the field transformations such as amplification, self-focusing or
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diffraction on apertures may be easily performed with merely slight increase of the 
computing time, on the other hand. The time-consumptions of the method when 
calculating the filters and great errors of numerical nature, appearing due to their 
cumulation along the whole propagation trajectory of the beam encourage to look 
for other quicker and more accurate numerical methods. From the methods possible 
to apply, like: Hankel transform, fast Hankel transform [2], eigenfunction method 
[3], fast Fourier transform [4], the method of fast Hankel transform and the method 
of eigenfunctions require equally small operational computer memory as that of 
differences if restricted to the axial symmetric beams only. Therefore, if the available 
computers are of small operational memory the methods saving memory should be 
applied.

In the present paper, the method of eigenfunctions has been used for the case of 
axial-symmetric beams. In this case, the parabolic equation has the solution 
expressed in terms of a series of Laguerre-Gauss functions. The additional reason, 
speaking for the application of this method (in place of that of fast Hankel transform) 
is the fact that it may be easily generalized to the case of angularly nonuniform 
beams. In the present work we apply the algorithm of parabolic solution analogical 
to that described in paper [5]. The only difference consists in application of 
Laguerre-Gauss function in place of Hermite-Gauss functions. Therefore, we do not 
intend to describe the algorithm solution in detail. Our aim is rather to provide a 
general presentation of the method (Sect. 2). In Section 3 the results of approximation 
of the selected functions with, the help of finite sum of Laguerre-Gauss functions are 
presented, while in Sect. 4 the examples of application of the described method are 
shown.

2. Mathematical fundamentals of the Laguerre-Gauss functions

The parabolic equation applied commonly to the analysis of radiation propagation in 
the laser systems has the forms:

2 ik dE ld_ 

dz + r dr
= 0, (1)

lim—  = 0, lim E(r) = 0 (2)
r - *0 Of r-*oo

where: k = 2n/X — wavenumber,
E — complex amplitude of the electric field, strength of the wave, 
z — coordinate along the beam axis describing the direction of the 

radiation propagation,
r — current radius in the beam cross-section.

Both the stationary approximation and axial symmetry of the beam have been 
assumed. Equation (1) with conditions (2) has the eigenfunction of the form (the so-called
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Laguerre-Gauss function)

/„(r, z) =  ^ ^ ( 2^ ) e x p { —g ) 2- / g —¡(2n+ . ,* }  (3)

where: L„(x) — Laguerre polynomial of n-th order,

(4)

(5)

(6)

D = kwo- (7)

Equation (1) and the boundary conditions (2) impose no conditions on the parameter w0 
(the radius of the Gaussian beam waist), i.e., eigenfunction of the zeroth order. It may be 
selected arbitrarily, which makes it possible to increase the accuracy of the calculations 
(see Sect. 3).

Equation (1) with boundary condition (2) and the initial condition 

E{r, z)\z=0 = E0(r) (8)
has the solutions:

£(r,z)=  £  C„/„(r, z), 
11=0

(9)

C„ = I  E0(r)f»(r, 0)r dr (10)
0

where: Cn — complex (in general) coefficients of the initial condition expansion (8) 
into a series of the eigenfunction,

* — means complex conjugate.
In practical realization the finite sum is used in place of the infinite one

E ( r ,z ) ^ Y ,C , f '( r ,z ) .  (11)
« = 0

This approximate solution generalized with the help of Talanov transformation [5] 
into either the convergent beam (focused by the lens) or the divergent ones enables us 
to design an effective numerical method for modelling of the radiation propagation 
in the laser systems.
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3. Approximation of the unity jump function and supergaussian 
function by means of the finite sum of the Laguerre-Gauss function. 
A comparison with the difference method

The replacement of the infinite sum (9) by the finite one (11) introduces an error of 
approximation depending on the number N  of components and on the quantity

rm =  a/w0, (12)

i.e., the ratio of the beam radius a to the radius of the waist of the Gaussian beam w0. 
As it is well known from the theory of numerical methods, the slow-varying functions 
may be approximated with high accuracy by means of the finite sum (11). When the 
calculations concern the lasers an important role is played by the functions of 
unity-jump

E0(r) =
1,
0,

r ^  a 
r > a

(13)

describing the transmission of diaphragm and pinhole located in the laser system. 
For this function, the coefficient of the expansion (10) may be calculated from the 
following recurrence formulae:

C0 = 2 [ l - e x p ( - x m/2)], (14)

=  2xmexp(—xnJ7)—C0, (15)

-i-i —
n + 1

(16)

for n > 1, where
(17)

In Figure 1 some selected eigenfunctions (of order n = 3 and n = 10, respectively), 
have been plotted for the two values rm= 1 and rOT = 4. It can be seen that the 
frequency of oscillation of eigenfunctions increases with the increase of rm, and 
consequently the fast-varying functions may be approximated more accurately. In 
this figure, the broken line is used to plot the approximate unity-jump function. The 
beam radius has been assumed to be equal to unity.

In Figure 2 the result of function approximation (13) has been plotted with the 
help of finite sum (11) for rm = 1, for 20 components being summed up (Fig. 2a) and 
200 (Fig. 2b). We can see that the increase of the number of components improves 
significantly the quality of approximation. For N = 20, rms error of approximation 
amounts to about 5%, while for N  =  200 it is reduced to 1.6%. Now, in Fig. 3 the 
same functions have been plotted for rm = 4. The rms error for rm = 4 and N = 200 
amounts to 1.6%, while for N  = 200 — 0.4%. Hence, we conclude that the increase 
of both the number of components and the value of rm results in an improvement of 
the approximation quality, i.e., significant diminishing of the rms error.
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Fig. 1. Influence of rm ratio of the beam a to the radius of the Gaussian beam w0 on the oscillation speed of 
the selected eigenfunctions n =  3 and n = 10. The unity-jump function (Eq. (13)) has been plotted with 
a broken line for: a — rm =  1, b — rm =  4

In contrast to the rms error which diminishes while both the number of the 
components and rm increase, the maximal error of approximation remains constant 
and amounts to about 10% (strictly speaking, oscillates within the range 8-12%). 
This error may be reduced in two ways. The first one employs the so-called Tichonov 
regularization, which practically consists in a change of the values of the expansion 
coefficients ((14H16)). Namely, in place of the coefficients (14)—(16) we apply those 
changed according to the formula

C'H = C J(l+ m ), (18)

where the value of e should be chosen from the range of 10-4-10-2.



184 A. Dubik, J. Owsik, A. Sarzynski

Fig. 2. Approximation of the unity-jump function with the help of the finite sum of eigenfunctions: a — 
N = 20, b — N = 200. rm= 1 has been assumed. The broken line is used to plot the approximated 
function while the continuous line shows the result of approximation

The other way is to replace the real function by another one, for instance, the 
supergaussian function and expand the latter into series (Fig. 4). In Figure 4a the 
result of approximation has been plotted after application of the Tichonov 
regularization. The result of the approximation of the supergaussian function done 
with the aid of summing up of 100 eigenfunctions, is shown in Fig. 4b

E0(r) =  e x p [-3 .4 5 5 (r/a )100] · (19)

In this case, the coefficients of the expansion have been obtained by performing the 
numerical integration (10).
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Fig. 3. Approximation of the unity-jump function with the help of finite sum of eigenfunctions: a — 
N = 20, b — N — 200. rm = 4 has been assumed. The broken line is used to plot the approximated 
function while the continuous line shows the result of approximation

Of these two ways of removing oscillations from the approximating function 
connected with the Gibbs effect the one consisting in expansion of the supergaussian 
function (instead of unity-jump) into a series seems to be more safe.

The further calculations have been carried out without any regularization since it 
has been stated that in the planes z > 0 and for N > 200 the influence of the number 
of terms on the solution was small. For instance, the increase of the numbers of terms 
from N  =  200 to N  = 400 for rm = 10 changed the solution by single percent 
corrections.

It should be emphasized that the oscillations of the approximating functions
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Fig. 4. Improvement in approximation of the unity-jump function with the help of finite sum of 
eigenfunctions, a — regularization due to Tichonov method (Eq. (18)), N  =  1000, rm =  4, e = 0.001, b — 
approximation of the supergaussian function (Eq. (19)), N  =  100, rm =  4

around the approximated one (for the discussed eigenfunctions) are of much higher 
frequencies than those in the difference method [1]).

So far, the conditions of accurate approximation of the unity-jump function have 
been examined by using a finite sum of eigenfunctions. It is also interesting to 
compare the presented method with both the analytic solutions and those obtained 
with the help of difference method [1]. In order to compare the two methods, the 
calculations modulating the propagation of the axial-symmetric beam in the spatial 
filter have been carried out. A rectangular distribution of the power density in the 
beam at the object plane of the filter has been examined. The comparison has been 
made in three planes of filter:
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Fig. 5. Comparison of the diffraction distributions of the power density in the beam for the Fresnel 
number Sf  = 40. Continuous curve — solution obtained by using the method of eigenfunctions, N = 500, 
rm = 10; dotted curve — solution obtained by using the difference method

— in the near zone (Fresnel number Sf =  40, Fig. 5),
— in the far zone (Sf  =  0, Fig. 6),
— in the image plane of filter (Sf  =  oo, Fig. 7).

The solution obtained with the method of the eigenfunctions (ME) has been 
plotted with a continuous line while that obtained with the difference method 
(DM) -  with a dotted line.

In the near zone {Sf  =  40, Fig. 5) the solution ME takes the zero value (precisely 
2* 10“ 5) on the beam axis. The number of diffraction maxima along the beam radius 
amounts to 20. These facts are consistent with the diffraction theory. The application 
of the regularization of the coefficients of the series results in smoothing the solution, 
in increasing the value of the power density on the beam axis and even in 
diminishing the number of diffraction peaks if the value of e is too high (18). For 
these reasons, we have resigned from the regularization of the coefficients of the 

series. The solution DM is consistent with that of ME only at the rim of the beam.



188 A. Dubik, J. Owsik, A. Sarzynski

lg (P /P 0 )

Fig. 6. Comparison of the power density distribution in the focal plane of the lens. Fresnel number Sf  =  0. 
The others as in Fig. 5

Fig. 7. Comparison of the power density distribution in the image plane of the filter Sf = oo. The others as 
in Fig. 5
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DE reproduces faithfully only 6-7 extreme diffraction maxima. The other peaks do 
not appear at all. From Fig. 5 it follows that in DM the central part of the beam 
remains unperturbed. When reducing the spatial step Ar in DM and increasing the 
number of network knots the range of consistency of both solutions may be 
broadened — this occurs, however, at the expense of significant elongation of the 
computing time (proportionally to d r-3). Both solutions presented have been 
obtained after about 40 min computing time on the IBM PC/XT microcomputer 
(20 min for each solution).

In the far zone (Fig. 6, Fresnel number Sf  = 0, lens focus), the solution ME was 
consistent with the analytic solution with the accuracy up to first three significant 
digits within the whole range of arguments r/a < 20. The DM solution is consistent 
with the ME solution only in the central part (7-9 diffraction orders). In some points 
the amplitude of the solution DM is 3 times as great as the accurate value.

In fhe image plane of the filter (Fig. 7) the DM solution oscillates around the EM 
solution with the period equal to the step dr of the network. Such small-scale 
parasitical perturbations of the DM solution are characteristic for this method.

The above considerations allow us to state that by using EM much more 
accurate solutions may be obtained than with the use of DM.

4. Examples of eigenfunction method application 
to determination of the laser beam distribution

We shall consider two examples of the application of the method to analysis of the 
laser beam propagation, i.e., decoherencing and filtration.

As the first one, the problem of decoherencing of the laser beam will be 
considered. The decoherencing is realized by locating the elements perturbing the 
phase distribution in the beam trajectory in such a way that the beam of radiation 
splits into many component beams incoherently interacting with each other. The 
decoherencing causes an improvement of illumination uniformity of microspheres in 
the experiments concerning the thermonuclear synthesis, a decrease of self-focusing, 
and increase of energy extraction from the laser amplifiers.

At the Institute of Physics of the Academy of Sciences, USSR, a number of 
experiments have been carried out, in which the decoherencing element wias the 
Michelson pile composed of eighteen circular glass plates of 3 mm in thickness and 
different radii. The smaller had an 11 mm diameter while each subsequent plate was 
of diameter greater by 2 mm than the previous one [6].

Such a design of the pile assured the decoherency of the Deiphin laser beam 
(corresponding to the spectrum width and the degree of time coherence). Due to 
technological reasons the transmission of this pile was the function of the type

T(r) = 1,
0,

r ^  5.35 or 5.5 + i < r ^  6.35 -I- i 
5.35 + * < r < 5.5 + / (20)

i =  0, 1 ,2 ,..., and so on, r [mm] (the plates were provided with the so-called
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technological phase of widths 0.15 mm which “threw away” a part of the radiation 
outside the beam). This pile causes the splitting of the incident beam into eighteen 
component beams (among those 17 being of ring form) interacting incoherently with 
each other.

The following manner of modelling of decoherencing influence of the pile on the 
laser beam has been assumed. The phase delay between the component beams has 
been neglected, the above presented method of eigenfunctions has been applied, the 
power density distributions of the radiation appearing as a result of the diffraction of 
eighteen mutually independent beams (including seventeen ring beams) have been 
calculated. Incoherent interaction of the beams was modelled through summing up 
the laser beam power densities of the component beams (instead of the complex 
amplitudes of the electric field strength of the wave) to obtain the power density of 
the total beam.

E [o.u]

Fig. 8. Transmission of the Michelson pile applied to decoherencing the laser beams, a — assumed 
transmission of the pile, b — transmission obtained in calculations when summing up 200 terms in the 
series, c — transmission obtained in calculations when summing up 400 terms in the series
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The results obtained are consistent with those achieved in experiments. The 
focusing influence of the pile on the beams was observed at the distance greater than 
10 m from the pile. A satisfactory quantitative consistence of the used numerical 
model with experiment has been proved by comparing the numerical solution with 
the experimental results for the distance of 2 m from the pile. In the far zone (i.e., in 
the focus of the lens) such a good consistence has not been achieved, which may be 
explained by the fact that the beam incident on the pile was partially coherent, which 
has not been taken into account in our calculations.

Fig. 9. Power density distribution of the radiation for chosen component beams at the distance of 2 m 
from the pile, a — central beam r,nt = 0, rMt =  5.35 mm, b — ring beam rint =  5.5 mm, reU = 6.35 mm, c — 
ring beam r,Bt =  15.5 mm, rnl = 15.35 mm. The lower curves — linear scale, the upper curves — 
logarithmic scale (a unity interval on the vertical scale corresponds to four orders of magnitude)
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Below, the selected results of calculations will be discussed. In Figure 8 the 
amplitude transmission of the Michelson pile has been plotted. In Figure 8a the 
assumed transmission has been drawn while in Figs. 8b and 8c that obtained by 
numerical calculations is presented (b — for N  = 100, c — for N  = 400). 
A comparison of Figs. 8b and 8c leads to a surprising result that the doubling of the 
number of the terms worsened the quality of approximation. It should be 
remembered that the solutions from Figs. 8b and 8c have been obtained after 
summing up eighteen component beams. Unfortunately, this gives no explanation of 
the observed worsening of the approximation. In all the further graphs the lower

Fig. 10. Power density distribution of the radiation for chosen component beams at the distance of 10 m 
from the pile. The others as in Fig. 9
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curves are drawn in the linear scale while the upper ones in the logarithmic scale (the 
vertical segment of unity length corresponds to four orders).

In Figure 9 the distributions of three chosen component beams at the distance of 
2 m from the pile are plotted, while the same for the distance of 10 m is shown in Fig. 
10. The small scale modulations of the radiation power density seen in Fig.‘ 10 is 
worth noting. In the difference method a correct quantitative description is 
practically impossible.

In Figure 11 the power density distribution in the total beam has been plotted for 
the distance of 2 m from the pile: a -  under the assumption of the coherence of the 
component beams, i.e., the complex amplitudes of the electric fields have been 
summed up; b — under assumption of lack of coherence, i.e:, the intensities of the 
component beams have been summed up.

P/Pq

Fig. 11. Power density distributions in the total beam at the distance of 2 m from the pile, a — coherent 
adding, b — incoherent adding. The continuous curve — linear scale, dotted curve — logarithmic scale 
(a unity interval in the vertical scale corresponds to four orders of magnitude)



194 A. Dubik, J. Owsik, A. Sarzynski

A quantitative change in the distributions in those two cases has been observed 
while the “incoherent” summing up results in much more uniform distributions. The 
distribution in the total beam at the distance of 10 m from the pile has been shown in 
Fig. 12. A concentration of energy at the beam axis (Fig. 12b) is visible. This effect is 
more distinct at greater distance from the pile.

As a subsequent example of application of our method we shall consider the 
filtration of radiation. The filter taken to the calculations was composed of two 
lenses of common focus and of focal length /  = 1000 mm and the pinhole located 
near the beam focus. A circular source of the plane electromagnetic wave was 
positioned in front of the first lens of the filter at the distance of 1000 mm from the 
latter. The image of this source appears at the distance of 1000 mm behind the 
second lens of the filter.

Fig. 12. Power density distribution in the total beam at the distance of 10 m from the pile. The others as in 
Fig. 11
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In Figure 13a the result of approximation of the unity-jump function is shown, 
which was obtained by summing up 500 terms of the series of the Laguerre-Gauss 
functions. The lack of oscillations of approximating function follows from a small 
number of points for which the field was calculated (100 points on the fragment of 20 
mm length). In Figure 13b the power density of the filter focus has been plotted. In 
Figure 14 the influence of the pinhole located at the filter focus on the radiation 
distribution in the image plane is demonstrated for several radii of the pinhole. The 
pinhole radii have been chosen in such a way that:

i) The pinhole stops the second and higher order fringes of the Airy’s 
distribution at the focus rpinh = 0.12 mm.

ii) The pinhole stops the third and higher order Airy fringes, rpinh = 0.17 mm.
iii) The pinhole stops the fourth and higher order Airy fringes, rpinh = 0.22 mm.
As the pinhole radius increases the distribution of radiation at the image plane

approaches the initial distribution.
The fundamental results of this series of calculations may be summed up as 

follows. If an even number of side orders (Airy fringes) passes through the pinhole a 
maximum appears on the axis of the beam in the image plane, while for an odd 
number a minimum occurs. The amplitude of oscillations diminishes and their 
frequency increases for increasing radius of the pinhole. This results from cutting out 
the high frequency part of the beam spectrum by the pinhole — which is a well

Fig. 13. Graphs of radiation power density, a -  in the object plane, b -  in the focal plane of the filter. 
Lower curve — linear scale, upper curve — logarithmic scale
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Fig. 14. Influence of the radius of the pinhole located at the focus on the power density distribution at the 
image plane, a — one side order passes through the pinhole, b — two side orders pass through the 
pinhole, c — three side orders pass through the pinhole

known Gibbs effect in numerical methods. Outside the central part of the beam in 
the image plane the low energy tail of the amplitude of order of 1% of average power 
density is visible in the central beam. This tail appears as a result of filtration. Due to 
low power this part of the beam will be amplified linearly in the laser rods and thus 
much stronger than the central part. Besides, the radiation may suffer from reflection 
from the surface of the side rods. The interference of this radiation and its strong 
amplification connected with oscillation structure of the power density at the rims of 
the beam may lead to perturbation of the uniform distribution in the amplified 
beam. With the increase of the pinhole radius the oscillation frequency increases 
outside the central part of the beam as well (see Fig. 15). Hence, it follows that for the 
design of the spatial filter these oscillations should be taken into account. They
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should be eliminated, for instance, by inserting the suitable diaphragm in the beam 
trajectory through the amplifying head. The radius of the diaphragm should be equal 
to, e.g., the radius of the first minimum appearing outside the central part of the 
beam. The radius of the beam defined as the radius of the first minimum outside 
central part (in Fig. 15, for instance, it amounts to about 10.5 mm) is greater than it 
would follow from the geometrical optics. This phenomenon should also be taken 
into account when designing the spatial filters.

In the subsequent series of calculations the pinholes, were positioned in front of 
the focus plane (at about 22 mm in front of the focus) in the plane, for which the 
Frensel number was equal to 2.

Fig. 15. Power density distribution of the radiation in the image plane of the filter. The pinhole of the 
radius 0.59 mm (equal to the radius of the 10th Airy ring) is located in the focal plane

In Figure 16 the distribution in the image plane of the filter has been plotted. The 
pinhole radii have been assumed to be the same as for the Fig. 14, i.e., 0.12, 0.17 and 
0.22 mm. In this position (F = 2) and for such small radii of the pinhole, the 
differences decrease. In Figure 17 the distribution of the image plane of the filter 
occurring due to the filtration by the filter of radius of 0.53 mm (identical as in Fig. 
15) has been plotted but for changed position of the pinhole (F = 2). When 
comparing Figs. 15 and 17 it can be seen that the differences are small now. The 
amplitudes and the oscillation frequency are also similar in the low energy part of the 
beam.

The shift of the pinhole to the plane defined by the Fresnel number F = — 2 (i.e., 
toward the second lens of the filter) caused no changes in the distribution as 
compared to the position F = 2 except for the sign of the imaginary part of the 
electric field strength, which has been changed. The absolute values of the real and 
imaginary parts were exactly the same.

The above conclusions have been drawn after assuming high idealization of the 
laser beam. Among others, the restricted degree of coherence has not been 
accounted, which had significant influence on the distribution in the focus, and thus 
on the result of filtration.
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Fig. 16. Influence of the pinhole radius on the power density distribution at the filter image plane. The 
pinhole is located in the plane defined by the Fresnel number F =  — 2 (about 22 mm in front of the focal 
plane). Pinhole radius: a -  0.12 mm, b — 0.17 mm c — 0.22 mm

Fig. 17. Power density distribution of the radiation in the image plane of the filter. The pinhole is located 
in the plane defined by the Fresnel number F = — 2. The pinhole radius 0.59 mm
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5. Summary

In the examples given above, the effectiveness of the method of Laguerre-Gauss 
functions as applied to examinations of filtration and decoherencing has been 
illustrated. Thanks to this method considerable abridgement of the computing time 
of the radiation propagation in filters has been achieved. However, for the case of 
amplifiers, where it is necessary to determine the expansion coefficients in several 
planes, the computing time with this method becomes much longer as compared to 
that needed for the difference method. The final balance, however, speaks in favour of 
the method of eigenfunctions which offers much higher accuracy. In the examples 
considered, the minimal number of terms and rm which assure the sufficiént accuracy 
(but no higher than required) has not been examined. Thus, there exists a reserve 
which may allow us to model the work of a laser system with the needed accuracy.
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Применение метода функции Лагера-Гаусса для анализа линейного 
распространения излучения
В работе описан метод решения однородного и стационарного параболического уравнения 
(описывающего дифракцию излучения) основан на использовании собственных функций этого 
уравнения. Принято цилиндрическую симметрию пучка. Проверено влияние количества исполь­
зуемых собственных функций на точность апроксимации начального условия. Проведено 
сравнение решений полученных методом собственных функций с решениями полученными 
разностным методом. Даны два примера использования метода: моделирование влияния 
когерентности на лазерный пучок и пространственная фильтрация.


