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Course of optical bistability in a ring cavity 
in presence of an external magnetic field

D. Strojewski

Institute of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland.

The results concerning the course of dispersive optical bistability in an isotropic, nonlinear ring 
cavity are presented. It is shown that in the presence of an external magnetic field, linearly 
polarized light transmitted through a cavity changes its polarization to the elliptical one, and 
reveals bistability of the intensity and polarization state. The direction of rotation of its electric 
vector can also vary noncontinuously. 

1. Introduction

Since 1980 several authors have described optical and hybrid systems in which 
bistability of the state of light polarization can appear [1]—[7]. Polarization 
bistability caused by external factors has been presented in the works [8] and [9]. 
The authors of [8] have considered polarization bistable switching in media 
composed of resonantly excited two-level atoms and placed in a weak magnetic field 
transversal to the direction of light propagation. In the paper [9] it has been shown 
that externally forced anisotropy in isotropic media is able to cause bistable changes 
of the polarization state of light transmitted through a nonlinear Fabry-Perot cavity.

This paper deals with the behaviour of a plane, monochromatic, linearly 
polarized light wave transmitted through a nonlinear, isotropic ring cavity with an 
external magnetic field applied parallelly to the direction of propagation of the wave.

The external magnetic field splits a plane wave into right- and left-circularly 
polarized waves. These waves have different constants of propagation and, therefore, 
different resonance conditions in the ring cavity. Nonlinearity of the medium implies 
the interaction between the two waves. The phase of each wave depends not only on 
its own amplitude but also on the amplitude of the wave of the opposite circular 
polarization. It leads to interdependence of the intensities of the circularly polarized 
waves (that type of interdependence has been already presented in the paper [7]), 
and to bistability of the transmitted wave intesity. The transmitted wave appears to 
be elliptically polarized and the parameters of the polarization ellipse also reveal 
bistable changes. It is even possible to select geometrical parameters of the cavity in 
the way allowing noncontinuous changes of the direction of the electric vector 
rotations.
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2. Formulation of the problem and simplifying assumptions

Ring resonator studied in this paper (see Fig. 1) is composed of four mirrors and 
a nonlinear crystal. The mirrors 1 and 2 have the following intensity reflectivities: 
R|l (Tj| +R|| = 1) for incident waves having the electric vector parallel to the plane of 
incidence, and RX(T1 + R1 = 1) for incident waves having the electric vector 
transversal to the plane of incidence. The mirrors 3 and 4 have the intensity 
reflectivities equal to 1. The crystal is made of a medium which appears to be 
isotropic in absence of the external magnetic field and reveals nonlinear third-order 
electric susceptibility. The external magnetic field is parallel to the Oz-axis (B0ez) and 
to preserve the symmetry of the tensors of nonlinear susceptibility.

Fig. 1. Nonlinear ring resonator (1—4 
mirrors)

The linear electric susceptibility tensor has the following from [10]

Ejk = £r 3jk + a 1 Bl s zk + 1 a B0 ejzk, j,k = x,y,z (1 a)

where:
er -relative electric permittivity of the medium (in general er is a complex 

number: er = e'-iX '),
ac,acl -constants characterizing the magnetooptical properties of the medium, 
Sjk -Kronecker’s tensor,
ejki -absolutely antisymmetric third-rank pseudotensor.

The linear magnetic susceptibility tensor is of the form

t*jk= 1. j,k = x,y,z. (lb)

The field inside the nonlinear medium is described by the equation

curl curl & = (2)

and by the nonlinear material equation 

= £o £jk<?k+&jL, h k  = x,y,z. (3)
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i:(] and ft() denote the electric and, respectively, magnetic permittivities of vacuum, 
and t:jk is defined by (la). The components of the nonlinear polarization vector .^NL 
are as follows [11]:

L = l (* l  + Sy + $1) gj j  = x , y, z. (4)

where % is one of the components of the electric susceptibility fourth-rank tensor
(X  •  Xxxxx Xyyyy Xzzzz)’

The field inside the nonlinear medium is described by Eqs. (2)—(4), the following 
simplifying assumptions being used:

1. The wave field propagates in the medium parallelly to the Oz-axis and depends 
(as a function) solely on the variable z.

2. The wave field is a monochromatic wave field of the frequency oj (components 
of the field having frequencies equal to integer multiples of co are neglected) far from 
the resonance frequencies of the medium.

3. The wave field incident upon the resonator is a linearly polarized, mono­
chromatic, plane wave

g li):= \ex E0 {exp [i(a> t -  /c0z)] -I- c.c.} (5)

where k0 = cu/c (c- speed of light in vacuum).
4. The wave is transmitted through the planes separating the medium and 

vacuum (z = 0 and z = L) without reflection.
The assumptions 1 and 2 imply

g z = : ^ L = 0. (6)

It mens that the wave field inside the cavity is transversal to the direction of 
propagation.

The real field vectors g, 3?NL can be described as sums of complex functions 
E = \EX Ey £ Z]T, PNL = [P?L PyL Pz L]T and their complex conjugations:

g = ^{E + E*), # NL = i [ p NL + (pNL)*]. (7)

The components of the complex nonlinear polarization vector PNL proportional to 
exp(icot) are:

P?L =  tx[(3 |£J2 + 2|£,|2)E, + £j£*],

P»NL = t Z[(3|£Jl +2 |£J1) £ ,+£*£*].
( 8)
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3. Nonlinear Helmholtz’s equations in the nonlinear medium and their 
solutions

The components of the wave field proportional to exp(icot) are described by the 
following system of scalar equations:

d2
j P Ex =  — kl£r Ex +  ik,Q <xB0Ey — fi0to2PXL, 
d2
^ 2 Ey = -koSrEy + ik%aB0Ex- n 0w2PyL.

(9)

The wave field is decomposed into two fields of right and left circular 
polarizations:

£ j : — ~(Ex+iE),  E2-— — {Ex iE),
v/2 v/2

(10)

hence, the system (9) may be replaced by the following system of scalar Helmholtz’s 
nonlinear equations (equivalent to (9)):

dz2
+ kl(er-ocB0)

[ ^  + ̂ (£r + 0t5°)

E i =  ~ \ po^ 2X(\E1\2 +  2 \E2\2)E 1,

£ 2 = co2 Z (2 IE.I2 + 1£2|2) £ 2.
( 11)

The assumption 4 allows us to expect the following form of the solution of the system
(11) [12]:

Ej{z,t) = £j{z)exp {i \_<Pj (z) — kj z']} exp (zcot), 
where

k j : = t i №  + i - \ Y * B 0l

( 12)

(13)

The amplitudes q2 and the phase function <PV <P2 are real, slowly varying 
functions of the variable z:

£ . t . 
dz2 ' J

«  2kj

d2
— , «  2k; i .
dz2 J1 J dz

U .dz 1 «  kj, j  =

(14)

The approximation of slowly varying functions [12] leads to a system of 
first-order differential equations which, after separating real and imaginary parts,

j
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yields the following equations determining the amplitudes and the phase functions of 
the circularly polarized waves:

dzSl e i i i ’

- 0 J =  - y j t i i  + 2 8 - } ,  1,2

where the constants denote:

ko z” n0w2x . . 0
St' 2 k /  yj ' ’ 1 ,2'

The system (15) has the following solution:

Zj(z) = ^(O)exp(-^-z),

(15)

(16)

(17a)

0 j(z) - 0 j{O) = - y i z[^(0) + 2 ^ _ j(0)] if e" = 0,

4>j(z)-<Pj{0) = yi |^ - [ e x p ( - 2 ^ z ) -  1] qj(0)

+ — [ex p (-2 e3_j z ) - l ] ^ _ J-(0)} if e" #  0, 7=1,2.  (17b)
&3-j )

4. Boundary conditions and bistability of transmitted light
The mirrors 1-4 are used to achieve feedback of the wave field in the nonlinear 
medium. The wave leaving the medium at the plane z — L is split by the mirror 2. Its 
reflected part is directed by the mirrors 3 and 4 to the mirror 1 where it is split and 
its reflected part is incident onto the .nonlinear medium at the plane z — 0. Hence, the 
boundary conditions at the plane z = 0 are as follows:

V ^ii Eo + R h exp (i <t> ||) {£! (L) exp [i(0 1 (L) -  k t L)] + £2 (L) exp [/ (0 2 (L ) - k 2 L)]}

= (0) exp [i (0)] + £2(0) exp [ i* 2( 0)],
(18)

R± exp(i 0 ±) {Z2(D exp [i (02(L) -  fc2 L)] -  ̂  (L)exp[i(Ql (L)-  k , L)]}

= £ 2 (0) exp [i <P2 (0)] -  £, (0) ex p [/ <t>, (0)].

The phases of the field components, having the electric vector parallel and 
transversal to the plane of incidence of the mirrors, increase respectively 0  and <PL 
on their way from the plane z = L to the plane z = 0.

The following symbols are introduced:

tij\= exp(QjL), 7=1,2,

A 0 j : = 0 j { L ) - 0 j ( 0), 7 = 1,2,
d 0 : = 0 1(L ) -0 2(L) + (/c2-/ci)L,

4 — Optica Applicata XIX/3/89
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I0-intensity of the wave incident onto the mirror 1 from outside,
/ tr-intensity of the wave transmitted through the mirror 2,
11 -  intensity of the right-circularly polarized component of the wave leaving the

crystal at the plane z = L,
12 -intensity of the left-circularly polarized component of the wave leaving the

crystal at the plane z = L.
Now, we can rewrite the boundary conditions:

Ij = ^ T\\IolRl + r i l - j - 2R±ri3-jCOs{A<I>3-j+<P1- k 3_jL)'], j =  1,2, (19a) 

cos(d<*>) = / — j ,  sin(d4>) = (19b)
V 11 m  v  / 1 m

I„ = |(T ’II + TJ (I, + / 2) + (T]| -  r j  V / ^ c o s  (19c)

^ ^ l  = yiih + y i2 I2< J = > . 2 (19d)
where the symbols Q, L x, L2, M denote:

Q = {r}l exp(-iA4>l) - R ll exp[i(0H - /q  L)]j |/?1exp[i(d>1 —/c2 L)] 

- i 72exp(-id<£2)} + {i/1exp(-td<£1)-.R 1exp[i(<£1- /c 1L)]}

{i? || exp [f (<Z>n -  k2 L)] -  r\2 exp( — i A <*>2)},
Lx= R l - R ^ r h  cos{A<Pi +<Px - k l L) + ti2 cos(d <P2 + 0 ±-  k2 L)]

+ rjl rj2cos (A$l -A<I>2 + k2L - k l L),

L2= rjl r}2sm{A<Pl — A<l>2 + k2L — kl L) + R1ti2 sin (d <P2 + <P± — k2 L)

— sin(d0! + &1 — k i L),

M  = Rj_ + ril — 2R1ril cos{A<Pl + &1 — k l L), 

and the matrix T = [yj7c]j,k = i ,2 is defined below:

(20)

- 2  y jL jn 0/E0 (2 -  if 4' = 0,

Qk
j,k = 1,2.

(21)

Expressions (19a) differ from the classical ones [13], [14] which describe the 
course of bistability in a ring cavity. In the formulas (19a) l x depends not only on I x 
but also on I2 and inversely:

h  = / i ( / „ / 2, U
12 ~ /2  (̂ 1* 12’ ̂ 0)’

/j  and f 2 denote nonlinear functions.
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The system of algebraic equations (19) can be interpretted by means of numerical 
analysis. The method used in this paper consists of two steps. In the first step the 
analysis of the equation

Ji[Ki + *7i-2>71Ki cos(^<P1 +  <P± — /c, L)]

= 12 [^± + >72 ~  2K± 772 cos (A <P2 + <PL — k2 L)] (23)

allows us to approximate the curve describing interdependence of /, and I2 by 
respective segments. This curve is used in the second step to find a starting point (/(10), 
/ (20)) for the Newton’s two-dimensional method, based on solving two nonlinear Eqs. 
(19c) and (23) for each given value 1U. Having found the exact values (7 ,./2) one can 
easily determine / n (see Eq. (19a)). It is also possible to describe the state of 
polarization of the wave field transmitted through the mirror 2 as a function of
( / | , / 2).

The wave field transmitted through the mirror 2 has the following components: 

x exp[i(cof — k0z)~\.

= i /̂ K 2(t)exp[i(<P2(Z.)-J:2L ) ] -« 1(L)expD(i>1(L)-/cl L)]}
' V 1

x exp [i (art — /c0z)]. (24)

It means that the matrix of coherence [15]

M = [M ;J = [<£,. £ k*>], j ,k  = x, y, (25)

has the determinant |M| = 0. Hence, the parameter of polarization P [15] is equal to 
1 what means that the transmitted light is completely polarized. The polarization 
ellipse is characterized by two parameters 0and P. The absolute value |tan <9| is 
equal to the ratio of semiaxes of the ellipse, the sign of tan ©determines the direction 
of the electric vector rotation -  right if tan © > 0, left if tan 0  < 0. is the angle 
between the major semiaxis and the Ox-axis. The parameters can be calculated from 
the following formulas:

sin 2 0  =
(Myx- M xy)

M x x  +  M y y

a .  71
Itr

tan 2S' + ________ 4n/T|| 7 ^ 7 / , / 2sin(J*)
Mxx- M yy (/, + / 2)(T|| -  711 + 2(71, + TJyj l  1 / 2 cos 0)

(26)

(27)

The nonlinear interdependence of I { and I 2 (22) allows to expect bistable changes of 
tan© and lF.
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5. Graphical illustration of the received results
The interpretation of the previously discussed results is based on numerical 
computations executed on an IBM PC/XT compatible microcomputer. The values of 
the used material constants refer to CS2 [11], [16]. The medium is assumed to reveal 
no energy dissipation (a" = 0). The geometrical parameters of the cavity are as 
follows: L= 0.01 m, R {1 = 0.4, R± = 0.43.

Fig. 2. Intensity bistability in the ring resonator referring to the phase increases: <P± = ^  = n/6 
(a), and <P± = n/3, =  n/2 (b)

Fig. 3. Bistability of the ratio of the polarization ellipse semiaxes referring to the phase increases: 
<t>i = 4, \\= n/6 (a), = n/3, <£|, = 7t/2 (b)
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Figures 2-4 present the course of bistability in the ring cavity when the external 
magnetic field is constant and reaches B0 = 0.01 T. The figures denoted by the letter 
a refer to the phase increases = <P± = k/6, the ones denoted by b — to <P± = n/3, 

= nfl.
Figure 2 illustrates the bistable dependence of the intensity of the transmitted 

wave / lr upon the intensity of the incident wave I0. The noncontinuous changes of 
/ tr take place when / 0 reaches the values Jj (the “jump” upward) and I l0 (the “jump”

Fig. 4. Bistability of the orientation angle of the polarization ellipse referring to the phase increases: 
<p ± =  <*>,, =  n /6  (a), =  ji/3, 0 ,| =  7t/2 (b)

Fig. 5. Width of the hysteresis cycle as 
a function of the induction of the 
external magnetic field
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downward). The parameters of the polarization ellipse are presented as functions of 
/ 0 in Fig. 3 (tan(9) and Fig. 4 {W). They both vary in bistable ways and the 
noncontinuous changes happen when I0 reaches and /^. It is worth mentioning 
that properly chosen geometrical parameters of the cavity can cause noncontinuous 
changes of the direction of rotation of the electric vector of the transmitted wave (see 
Fig. 3b).

Figures 5-8 show that the external magnetic field B0 controls the parameters of 
the hysteresis cycles of the output intensity 7tr and the polarization ellipse 
parameters. The width of the hysteresis cycles AJ0 — II — Ik as a function of B0 is 
presented in Fig. 5. The dimensions of the bistable “jumps” of 7lr, tan 0, V at the

Fig. 6. Heights of the nonlinear 
“jumps” of the transmitted light inten­
sity as functions of the induction of the 
external magnetic field referring to the 
incident light intensities: a —10 = I'0 
(“upward jump”), b —10 = (“down­
ward jump”)
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points 70 = U, 70 = 7̂  are also the functions of B0. It is illustrated in Fig.6 (7tr), Fig. 
7 (tan 0 ). and Fig. 8 (*7'). The figures denoted by the letter a and b refer to the changes 
at the point 70 = J and the point 70 = 7£, respectively. In the range B0 = 0-0.05 T all 
the functions presented in Fig. 5-8 appear to be approximately linear.

Atan(0)ul b

Fig. 7. Heights of the nonlinear “jumps” of the ratio of the polarization ellipse semiaxes of the transmitted 
light as functions of the external magnetic field referrum to the incident light intensities: a —/0 = /^,

b

Fig. 8. Heights of the nonlinear “jumps” of the orientation angle of the transmitted light polarization 
ellipse as functions of the induction of the external magnetic field referring to the incident light intensities: 
a / 0 = /J, b I0 =  I l0
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6. Summary and conclusions
The case of a dispersive optical bistability modified by the Faraday’s effect is the 
subject of studies in this paper. The girotrophy, which is forced by an external 
magnetic field in a nonlinear ring cavity, causes bistable changes of the state of 
polarization of light transmitted through the cavity.

The external magnetic field splits the plane wave into right- and left-circularly 
polarized waves. The phases of those waves vary in different ways. Each phase 
function depends not only on its own amplitude but also on the amplitude of the 
other one. It changes the resonance conditions in the ring cavity and causes 
bistability of the intensity of the transmitted light. The intensity of each circularly 
polarized wave varies in a bistable way and therefore the effect of bistability of the 
polarization state of the transmitted light appears also in the ring cavity.

The numerical analysis proves that the parameters of the intensity and 
polarization hysteresis cycles can be controlled by the value of induction of the 
external magnetic field.
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Течение оптической бистабильности в кольцевой нише 
в присутствии внешнего магнитного поля
Настоящая статья содержит результаты, относящиеся к течению дисперсионной оптической 
бистабильности в изотропной, нелинейной кольцевой нише. В ней было показано, что 
в присутствии внешнего магнитного поля линейно поляризованный свет, пропущенный через 
кольцевой резонатор, изменяет свою поляризацию в эллиптическую. Кроме этого, его 
интенсивность и состояние поляризации меняется бистабильно. Также направление оборота его 
электрического вектора может изменяться разрывно.


