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Matrix analysis of the polarization transformer
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A mathematical analysis of operation of the passive fiber optic polarization transformer (PT) is 
presented. Using the Jones matrix formalism, the equivalent lumped element representation 
(ELER) of the system is given and the physical meaning for each of its elements is described. It is 
shown that any state of polarization in optical fiber may be formed by polarization transformer.

1. Introduction

The development of the basis of fundamental optical elements introduced by the 
fiber optic technology made it possible to produce a new generation of optical 
sensors. The fiber optic gyroscope is one of such sensors the parameters of which are 
considerably better than those of mechanical gyroscopes. In a technical sense, this 
sensor is composed of five optical elements, such as: sensing loop, optical couplers, 
polarizer, phase modulator, and polarization transformer.

The analysis of the gyroscope operation requires the description of individual 
elements by means of analytical functions and the application of a proper method to 
the description of the whole system. The effective mehod is the Jones matrix formalism 
which allows the description of the interference phenomena in terms of the known 
input polarization and matrix characteristics of individual system elements [1], [2].

Below, the representation of the Jones matrix and its analysis for the polarization 
transformers, the construction of which was presented in paper [3], are given. The 
polarization transformer system is based on a Lefevre fiber optic quarter-wave 
elements conception [4], and consists of two single mode fiber loops of radii (R) 
chosen in such a way that the birefringence forced in those loops causes the phase 
delay equal to a wavelength. This is possible for the loop radii given by the formula

R =  Ş a d 2 (1)

wnere: l  -  light wavelength, d -  diameter of single-mode fiber, and a = 0.133 is 
a constant for silica fiber. The mounting of each loop enables its rotation by an 
arbitrary angle (Fig. 1). Such a rotation through the twisting of the fiber within the 
segments beyond the loop causes the change of the direction of the main axis of input
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Fig. 1. Polarization transformer scheme: A', B' -  places the fiber was fixed, LI, L2 -  quarter-wave loops, 
S -  fiber segments subject to twist

polarization ellipse for the light entering the second loop, which, in turn, brings 
about the change in the state of polarization leaving the system. Thus, by a suitable 
arrangement of both the loops the polarizations state (SOP) can be changed 
arbitrarily.

2. Jones matrix formalism

Because of the matrix description requirements the concept of the Jones vector was 
introduced. This vector describes completely the polarization state of a light beam in 
terms of two orthogonal components of the electric field vector. If we assume the 
Cartesian co-ordinate system (f, rj, z), the Jones vector for a beam propagating along 
the z-direction takes the form

where £,, <5, (f =  £, rj) are the amplitude and phase of electric field components along 
/-axis, respectively.

Let us assume that the Jones vector E(0) describes the SOP of the beam entering 
the optical system and that the E(z) describes SOP of the wave leaving this system. 
Then, in conformity with the Jones matrix formalism [2], these two vectors are 
connected by the following matrix relation:

where M is 2 x 2 the Jones matrix of the system.
The above matrix describing the optical system has different form depending on 

the choice of basic vectors. In order to unify the description as basic vectors the 
eigenvectors of the given matrix are taken. In such a case the Jones vector is a linear 
combination of the above vectors and the Jones matrix takes a diagonal form with 
its elements equal to its eigen values [5]. The Jones matrices obtained in this way 
may be divided into three groups, describing the operation of optical elements [2]:

i) Matrix of linear phasedelayer (retarder)

(2)

£(z) =  ME(0) (3)

(4a)

where 26 is birefringence introduced by this element or a matrix of constant-phase
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delay element which describes the light passes through the isotropic element

where A is the phase delay of light wave introduced by this element. 
ii) Matrix of polarizer

where pt , p2, p, are the amplitude losses of a given field component. 
iii) Matrix of an element twisting the polarization state ( rotator)

where 6 denotes the angle about which the polarization is twisted during light 
propagating through this element.

The essence of the given classification is the fact that an arbitrary optical system 
may be represented as a combination of the above basic elements [2].

3. Jones matrix of a disturbed single-mode fiber

The ideal single-mode optical fiber is the isotropic waveguide medium having two 
degenerated polarization eigenmodes elt e2 [6], [7]. These modes have equal spatial 
field distributions and propagation constants = ß2 = ß and linear, mutually 
orthogonal polarization states. The assumption of two eigenmodes as basic vectors 
for determining the Jones vector

leads in the Jones matrix formalism to the representation of beam propagating 
across the fiber in z direction as

The product of the exponential function and the unit matrix appearing in Eq. (8)

(4b)

(5a)

a particular case of which is the matrix of absorber element

P <  1 (5b)

(6)

(7)

(8)

(9)

is the Jones matrix for an ideal single-mode optical fiber.
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In this case, an optical fiber is physically equivalent to a constant-phase $z 
delayer, which is characterized by a matrix of D type.

An elastic deformation may cause a change of both the polarization eigenstates 
and the propagation constants (/^ #  /?2). In this case, optical fiber becomes an 
anisotropic medium of the definite value of birefringences Aft =  (/?x — p2) [8]. The 
changes introduced by deformation may be determined by the modified theory of the 
coupling modes given by Sakai [9]. This theory is based on the assumption that the 
introduced deformations cause a small distortion of the permittivity tensor

M - M + t M  (10)

where: [e j -  permittivity tensor for non-disturbed system, [<5e] -  disturbance tensor. 
The search for the solution of Maxwell equations as a combination of eigenmodes of 
non-disturbed system

E(z) =  A(z)e1+B(z)e2 (11)

leads in that case to the following equation for the coupled modes of disturbed 
structure

d/dz

where

(12)

Nu =  P + we0 f ef [<5e] etds, {1=1,  2),

Nlm =  =  coe0 J ef [<5e] emds, (/ #  m).

The suitable choice of z coordinate allows us to obtain the coefficients of the 
intermode coupling Ntm independent of this coordinate. In this case, Eq. (12) may be 
solved by letting A(z) = EXIexp( — ifaz) and B(z) = Eyiexp( — iptz). The results ob­
tained for j8t and Eyi/Exi determine the eigenvalues and eigenfunctions of Eq. (12), 
which allows us to determine the birefringence of the fiber

^  =  i{Nl l - N 22)2 +  \N12\2y ' 2. (14)

By taking advantage of the Jones matrix formalism and of the relation between 
differential form of the Jones matrix (Eq. (12)) and global matrix M  [10], we are able 
to determine the matrix characteristic of the disturbed optical fiber. Assuming that 
the introduced light is in elliptical state of polarization determined by £*¿(0) =  £,(0) 
and Eyi(0) =  Ey{0) the output polarization is determined by the relation

( 15)
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where

ml =  cos

The above relation allows us to determine the Jones matrix characteristic of the 
given type of fiber determination when only the deformation tensor is known.

If the optical fiber is twisted by C rad/m, then the application of the coefficients 
Nlm, calculated in [9] on the base of Eq. (13), leads through Eqs. (14), (15) to the 
following form of the Jones matrix of the fiber

Assuming the numerical value: G =  3.27 x 1010 N/m2 (the modulus of rigidity), 
C =  3.51 x 10“ 12 m2/N  (the elastoopic constant), nl =  1.45 (the refractive index of 
the fiber core), we get the value of parameter g =  0.08. As one can see from the form 
of the Eq. (16), the optical fiber is equivalent to the complex of the constant phase 
delayer -  matrix D, and the rotator -  matrix R [1]. In other words, the twisting of 
the fiber by the angle a =  will cause the rotation of polarization by the angle a' 
without changing the fiber ellipticity.

In the case of the pure bend of an optical fiber, of the diameter d and the 
curvature radius R (Fig. 2), the application of Eqs. (12)—(15), on the basis of [10], 
leads to the following Jones matrix:

(16)

where

a' =  \N 12\z = ----= -------- a = got.

(17)

¡J =  P +  W /R )2EkCu 5 =  -Afiz/2, Aft =  ~ i  (d/R)2EkC

0 X

Fig. 2. Bend of the optical fiber 
with the curvature radius R
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where: E =  7.60 x 1010 N/m2 (the Young's modulus), k =  2tt/A (the wave number), 
C1 = — 0.26 x 10"12 m2/N  (the elastooptic constant) [9]. Equation (17) shows that 
the bending fiber has the changed polarization characteristics and is equivalent to 
a complex consisting of the constant-phase delayer (D) and the linear phase delayer 
(G). Physically is means the change in ellipticity of the light beam passing through this 
element. It may be noticed that in this case the delay introduced by the light 
transmission in optical fiber is also changed (see Eqs. (9) and (17)).

4. Jones matrix of the polarization transformer system

To describe the polarization transformer we shall apply Cartesian coordinates shown 
in Fig. 3. Using the Jones matrix formalism we can notice that the matrix of the 
whole system PT is the product of the Jones matrix of the system elements, hence

T= R(£,)L2L\R{ — £) (18)

where L\,L2  are the Jones matrices of individual fiber-optic loops and R includes the

Fig. 3. Polarization transformer and the accepted system of coordinates, £ -  angle between the laboratory 
system (x, y) and plane of the loop rolling and mounting, (p -  angle of the turn of the loop LI, <j) -  angle of 
the turn of the loop L2

angular mismatch of the laboratory (x, y) and local (xT, yT) systems of coordinates 
[1]. While considering the separate loops, it can be easily shown that in the local 
coordinate system (Fig. 4) they form a complex of waveguides three times 
independently deformed. These deformations are: the twice twist of fiber by the angle 
± (p {± & )-  the segments A'A, AB, AB, BB' and the rolling of the fiber into the loop 
of the radius R -  the segments AA, BB. Using Eq. (16) we get

Mj =  e~jPzi
COS (p' — sin </>'"] 
sin<p' costp'J = D iP zjR W ), q>’ = gq>, (19a)

M3 =  e~iPzi
fcos (<P' — (p') —sin — 1W)J =;D(Pz3)R(-(p')R(<P'),
|_sin(#' — (pr) cos(<2>

M5 =  e- ^ r co^ '  . D f l f e J U W ,  · - - * * .  
5 Lsin^ cos^J 5

(19b)

(19c)
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Fig. 4. Matrix description of the loops LI and L2: the accepted system of coordinates (a) and the matrix 
representation of PT (b)

The same fiber loops, however, when fixed at the angle (p{<P) correspond to the linear 
retarders (Eq. (17)), which according to [1] are in laboratory coordinates described 
by:

|~cos<p — sin<p~| ["expO'^) 0 1 rcosç) sin</>~|
[_sin<p cos<pJL° expO’̂ i)] |_sinç) COS<pJ

s d ( / f e 3)R(v)G(51) * ( - <»),

Tcos<P — sin4>~| rexp(/<52) 0 cos <P sin 0~ |
|_sin<2> COS4>J [O e x p ( - ^ 2)J[_ —sind> cos4>J

=  DtfzJR{0)G(ô2)R(-<f),

(20a)

(20)

(20b)

z2 =  z4 =  2nR, Sl = S 2^ E C k  = ~, p = ( i  + p', P  = i(d/R)2ECl k,

here, for the parameter R, relation (1) is used.
Substitution of Equations (19), (20) to Eq. (18) leads to the Jones matrix of PT 

system of the form
T= R(€)L2LlR(—£) =  ^ ) M 5M4M3M2M 1R(-^)

= D(pL)D(4nRf}')Rm(a<P)G(52) R ( - a m ( a ( P)G(dl)R ( - (p )R (- t)

=  D{A)R(y2)G(d2) R ( - y 2)R(yi)G(51) R ( - y i)

=  D(A)M(y2, S 2)M(yl , d l) (21)
where:

d2
A = f}L + 2n—ECl k, a = 1 —g = 0.92, y2 = a# + £, y1 =  a(p + .̂

K

As one can see from Eq. (21), the polarization transformer system is equivalent to the 
complex of two quarter-wave planes (<5, = S2 = n/4\ the axes of which are set at the
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angles yt , y2 with respect to the axes of the assumed laboratory coordinate system.
Based on the first theorem about the equivalence of optical systems [1] the PT 

system described by the Eq. (21) is functionally equivalent to the system consisting of 
one rotator and one linear retarder

D(A)M(y2, ô2)M{yi , ôt) =  D(A)M(y, Ô)R(-y'). (22)

Such a representation is univocal and, as it was presented in [11], it may be 
determined from the relations

,  x 2 x 1 sm(ly 2 - 2 y1)tan y =   -------------- —-------—-,
l - x 2x 1cos(2y2- 2 y 1)

tan(2y +  y') =
X ! sin 2y ! +  x2 sin 2y2 
x 1cos2y1 +  x2cos2y2’

x \ +  2 x ^ 2  0 0 8 ( 2 7 2  -  2y i )  +  x i

1 — 2 x 1X 2 COS(2y2 — 2 y 1) +  X i X 2 i

xf =  tan<$,·, ¿ = 1 , 2 .  (23)

After the values of <5f, y{ determined by Eq. (21) are put into Eq. (23), the simple 
mathematical operations allow us to determine:

/  = n/2 +  y1- y 2 = n/2 +  a((p-0),

7 =  y2—n/4 = + n/4, (24)

S = n/2 + y1 — y2 = n/2 +  a((p-<P).

Hence, the equivalent form of the polarization transformer is described by the matrix 

TE = D(A)R(y)G(d)R(—y —yf) =
=  D (A)R(a^> + £ — n/4) G[n/2 + a((p — <£)] R( — n/4 — a(p — £). (25)

The above formula describes the scheme of equivalent lumped element represen­
tation (ELER) of the PT which is shown in Fig. 5. As one can see, the turn of fiber 
loops in the analysed system causes the changes of the twist angle (in the rotator 
matrix R), and the linear delay (in the retarder matrix G). These changes bring about 
the change of both the direction of the principal axis of polarization ellipse and of its

- A -u  ~ a v  Z -f + a4> + $

o

©

Fig. 5. ELER of the polarization transformer: D -  constant phase delay element, R -  optical rotator, 
G -  linear retarder
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ellipticity. The latter is univocal with the change of the state of polarization of the 
output beam. Numerical simulation of PT operating is presented in Fig. 6.

The second loop angle changed from —90° to 90° for three different angles of first 
loop was used as the parameter. It can be seen that this change causes the changes of 
the ellipticity e, and the azimuth 9 of SOP. Since the change of the azimuth can occur 
within the interval — 90°-90° and the ellipticity ranges from ±45°, thus the above 
sytem can transform the input SOP to an arbitrary different one.

Fig. 6. Changes of ellipticity e (--------- ) and azimuth <?(—· —) as a function of angle position of second
loop 0. As a parameter the angle position of first loop <p was used

As an example we will consider the transformation of the linear input polariza­
tion into the linear polarization of changed direction. In this case, as follows from 
Eq. (25), the element of retarder G must be the half-wave plate 5 =  n/2, hence tp = <P, 
and hence the matrix of the system takes the form

TE = D(A)R(a&-n/4)G(n/2)R(-a<P-n/4) =  D{A)R{a0)G(n/2)R(-a<P) =

= D(A)M(a<P, n/2). (26)

As it follows from the above relation, it is the system of the constant phase delay 
element (matrix D), and the half-wave plate twisted by the angle (matrix M), 
which means the twist of the direction of polarization by the angle 2u4> =  1.84 
This result is in agreement with the demanded operation of a similar system 
described in a general way in [4].

5. Summary

In the former chapter we have shown that the assumed description of the sytem leads 
to simple analytical formulae determining its operation mode. The application of the 
Jones matrix formalism gave the following results:
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i) The possibility of determining the output beam SOP as a function of input 
SOP, and the turn angles of fiber loops of which the system is made.

ii) The form of the characteristic matrix of the system describing completely its 
operation.

iii) The possibility of the decomposition of the total system matrix into the 
product of the finite number of the elementary matrices.

The description obtained in this way (Eq. 25) constitutes the equivalent lumped 
element representation of the PT system operation. Since the matrices in this 
representation have definite physical meanings (rotators, linear retarders, constant 
phase delay elements), therefore the scheme enables us to watch the physical changes 
in the operation mode of the system connected with the changes of its parameters.

In this description it has been assumed that the fiber is ideally isotropic. The real 
single-mode optical fibers have some defined value of birefringence which may play 
a significant role in the system’s operation. The source of this birefringence are: the 
ellipticity and nonconcentricity of the core, the twist introduced in the technological 
process, the asymmetric inner tensions, etc. Since these factors change at random 
along the fiber, then the value of birefringences has also a random distribution. The 
above birefringence is added to that caused by the deformations described in Sect. 
4 and can change the form of the Jones matrix of the system, consequently, it can be 
the source of disagreement between the real system operation and the presented 
theoretical model. However, the experimental model PT, the operation of which was 
described by the authors in [3], has shown that this element can produce any linear 
polarization state from any other input SOP. In this way, the work [3] is the 
experimental verification of the theory presented in this paper.
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Матричный анализ трансформатора поляризации
В работе представлен математический анализ действования пассивного световодного 
трансформатора поляризации (STP). Используя матричный формализм Джонса дана функцио­
нальная схема действования такой системы и определен физический смысл очередных ее 
элементов. Показано, что с помощью трансформатора поляризации можно получить любое 
состояние поляризации светового пучка в световоде.


