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Third order aberration spots of holographic lenses
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The third order aberration spots for spherical aberration and coma in the case cf holographic 
lenses recorded on quadrics of revolution were investigated. The investigations were made 
numerically and, if possible, analytically. The formulas for the third order aberrations in the case of 
holograms recorded on a plane substrate and readout on the cylindrical substrate were derived. 
The aberration spots of holographic lenses in this case were also investigated.

1. Introduction

The holographic optical elements (HOE) are more and more important in modern 
optics. The holographic lenses (holo-lenses) are the HOEs most frequently used in 
practice. Holograms (holo-lenses are special kind of hologram) recorded on the plane 
and spherical substrate are well described [1]—[5]. Recording holo-lenses on 
spherical substrate we can improve image quality. The proper radius of spherical 
substrate allows us to compensate coma without any influence on correction of 
spherical aberration. Astigmatism, field curvature and distortion do not depend on 
substrate geometry. Coma correction causes the aberration spot to be symmetrical. 
Image quality improvement, however, is still not satisfied. For this reason, we tried 
to get better improvement by using other quadrics of revolution as holo-lens 
substrate. The aberrations of hologram recorded on quadrics of revolution (quadrics) 
are described in papers [6]-[9].

In this paper we want to analyse the influence of quadrics substrate on the 
aberration spot shape. The holo-lens aberrations are usually described in the 
expansion given by M eier [3] which is analogous to that used in classical optics. In 
the case of holo-lens such an approximation is precise enough, and more useful than 
one given by Champagne [2] for the general case of hologram.

2. Analytical formulas

The eikonal for the third order aberrations recorded on quadrics in the Meier’s 
expansion is given by equation [9]

w =  ~  l*2S_ \  allG~ l  fi2S° -  \  A*~ \  A>- \  A*’ + 2 "xC*

+  \  *yc >+ \  P*Cpx+ ~ fiyCpj,-  i  l-  a/3Fp+ l-  xDx+ ’ yDs (1)
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where: S, Sp, G, Ax, Axy, Cx, Cy, Cpx, Cpy, F, Fp, Dx, Dy are the aberrations coefficients; 
a, p are the parameters describing the substrate geometry. We want to deal with 
holo-lens recorded on the sphere, ellipsoid, paraboloid, hyperboloid and cylinder in 
comparison with the holo-lens recorded on a planě substrate.
The quadrics are given by equation

z =  l/2C(x2 -f ay2 + ez2) (2)

where: C, e, a are parameters of the surface. 
i) Sphere, ellipsoid, hyperboloid of one sheet 

The coefficients a, P are of the form:

a =  2(Ce)~2 [1 -  (1 -  C2rH) “1/2] ,

P  — r2( i —Ve)

(3)
(4)

where r2 =  x2-fj;2.
Since we consider the third order approximation, we can apply it to the square root 
in Eq. (3). We get

a = r2e 1 (5)
For the sphere e = 1, and C is the curvature. For the ellipsoid e & 1 and e > 0. For 
the hyperboloid of one sheet s < 0. 
ii) Paraboloid 
In this case we get:

-  -2 (6)a — r 

P = 1/4r4C2. 

ii'i) Cylinder

a = 2C"2[ l - ( l - C V ) l/2].

P = x \

Applying the third order approximation we get 

a =  y2.

(7) -

(8)
(9)

(10)

The cylinder axis of revolution is positioned in the meridian plane.
In the case of holo-lens the Gaussian image location does not depend on 

substrate geometry (for a holo-lens we put xQ = xr = 0 and y0 = yT = 0). The location 
of Gaussian image is given by equations:

Vt = Ve± ii(V ,-V r), 

x X  =  xcFc,

y,K = y X  (l l >

where: Vq = yq l/|z,|, qe(i,c,o,r); zt is the z coordinate of: image point source,
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reconstruction point source, object point source, reference point source, respectively:

1 for divergence beam,
— 1 for convergence beam,

/i — A2/Ax

where is the reference light wavelength, X2 is the reconstruction light wavelength. 
The sign “ + ” corresponds to the primary image and the sign ” to the secondary 
image. The geometry of holo-lens substrate has influence only on spherical 
aberration and coma [9] (we deal with the third order aberrations). Therefore, we 
limit our consideration to these aberrations. The coefficients for the aberrations 
considered in the case of holo-lens are [9]:

S =  Ke3 ( 1 -  CszJ2 -  K,3 (1 ~  Csz,)2 ±  p [K 3< 1 -  Ctzc)1 -  1\3( ] - f e , ) 2] . (12)

G = V U l-C ezc) - V f ( ] - C s 2i) ± ^ V fM - C e z 0) - -V f( l-C s z ,n ,  (13)

Sp = V l - V f ± i i ( V l - \ ' f ) ,  (14)

C, = xcV*(l — Cezc) — XiV?(l — CezJ, (15)

C, = ycV l(l — Cezc) — y,V ¡(1 — Cez), (16)

Cpx = xeV l - x M ,  (17)
Cm = ycV l - yiV t  (18)

Sp, CpI, Cpy are of the same form as coefficients corresponding to aberrations of 
holo-lens recorded on a plane substrate.

Having the wavefront W3 (Eq. (1)) we can determine the transverse aberrations 
Sx|, 5y-t by the equations:

ÔXi = — (19)

2- (20>

For the holograms recorded on the plane substrate it is easy to find analytical 
formulas describing the shape of aberration spot corresponding to the aberration 
considered [10]. For the holo-lenses recorded on the quadrics we could not find 
explicit formulas which allow us to recognize the shape of aberration spots. The 
formulas are very complicated. However, by applying the approximate formula (5) 
for aa in the case of substrates considered in the point i) we are able to find 
analytically the shape of aberration spots for coma and spherical aberration. The 
expression for the spherical aberration with aa is

Ws = — l/8r45. (21)
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S = V l(l -  Czc)2 — Vf( 1 -  Cz.y±n\_VU  1 -  Cz0)2-  Kr3(l -  Czr)2. (22)

There is no difference in formula (21) between spherical, hyperboloidal and 
ellipsoidal holo-lens, because the parameter e is reduced. Substituting (21) and (22) 
into (19) and (20) we get:

<5*i = l/2xr2SZi, (23)

5y i= l/2yr2SZi. (24)

Applying the polar coordinate we get:

cbq = l/2p3Szicos6>, (25)

<5y} = l/2p3SZiSin0. (26)

These are the parametric equations describing sphere with radius: rs = 1/2p3Sz{ and 
with center located at the center of Gaussian image.

The expression for coma with aa is

Wk = l/2 xr2Cx+l/2yr2Cr  (27)

In this case

Cx = xcV U í-C z c) - x iV f ( l - C z i) and Cy = ycV 3c( l - C z c) - yiV t(l-C z .) . (28)

Here, as above, the parameter s is reduced, so we cannot distinguish between the 
surfaces considered in our approximated theory. Substituting (27) and (28) to (19) 
and (20) we get:

Sx-t = - i /2 (3 x 2 + y2)Cxzi-x y C yzi, (29)

ôyi = -1/2(3 y2 + x 2)Cyzi-x y C xzi. (30)

Matching Eqs. (29) and (30) and applying the polar coordinate we get

ôx{+ôyf+2ôxip2Cxzi+2ôyip2Cyzi + 3/4P\ C 2x + C2)zi = 0. (31)

Equation (31) corresponds to the circle with the radius rs = 1/2p2(Cj + C j)1/2z, and 
coordinates of the center given as ( — p2Cxzi,p 2Cyz^.

Comparing these results with results in work [10], we can see that the 
considerate aberration spots are of the same shape, in the approximation (5), as the 
corresponding aberration spots for a plane holo-lens.

The shape of aberration spots of paraboloid holo-lens (point ii) cannot be found 
in such a way, because of the form of a (8) and (9). Although it is possible to find an 
approximate expression for a in the case of the cylindrical substrate (point iii), the 
expression describing aberration spot is still too complicated. There is no symmetry 
between the variables x and y in expressions for aa and /?.

3. Numerical examples

In order to show the influence of the quadrics substrate on the aberration spots given 
by holo-lens we want to consider the holo-lens described in paper [11]. It is
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a collimation holo-lens with parameters: z0 = 100 mm, zr = zc =  — oo, p = 1, radius 
of the holo-lens is equal to 10 mm. We consider the primary image z-x =  100 mm. The 
holo-lens is spherical aberration free. To get the aberration spot corresponding to 
spherical aberration we put zc = —1000 mm, then z{ = 111.11 mm. For the coma we 
put x j z c =  0.04.

The figures below show the size and the shape of aberration spots (each figure has its 
own scale) corresponding to the spherical aberration and coma. Figures la, b, c show the 
aberration spots corresponding to the spherical aberration for holo-lens recorded on

Fig. 1. Spherical aberration: a  -  plane substrate, b -  spherical substrate (p =  200 nun), c -  spherical 
substrate (p =  100 mm), d -  ellipsoidal substrate (p =  100 mm, e = 8), e -  hyperboloidal substrate 
(p =  100 mm, e=  — 8), f  -  paraboloidal substrate (p =  100 mm), g -  cylindrical substrate (p =  100 mm), 
h -  “plane-cylindrical” substrate (p =  100 mm), I -  “cylindrical-plane” substrate (p =  100 mm)

plane substrate, spherical substrate with radius p = 200 mm, spherical substrate with 
radius p =  100 mm, respectively. It is worth noting that the radius p = 100 mm is 
optimal for the holo-lens [11]. Figures Id, e show the aberration spots correspon­
ding to spherical aberration for ellipsoid, hyperboloid substrate, respectively. The 
obtained shape confirms the conclusions from Sect. 2. Resolution of the figures is too 
low to show the difference between circle and real shape of the aberration spots. 
Figures If, g show the aberration spots corresponding to spherical aberration for 
paraboloid, cylinder substrate, respectively. In the case of paraboloid the shape is 
also actually circular, but the spot is much smaller than that obtained for



a plane holo-lens. In the case of cylinder we obtained practically a segment. We can 
notice a great size of the segment.

The aberration spots for coma are shown in Fig. 2a-g, for the same examples. 
The shape is rather typical except cylinder (Fig. If) when it is practically a segment. 
The holo-lens recorded on a spherical substrate with radius p =  100 mm is coma
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Fig. 2. Coma: a -  plane substrate, b -  spherical substrate (p = 200 mm), c -  ellipsoidal substrate (p =  100 mm, 
e =  8), d -  hyperboloidal substrate (p =  100 mm, e. = -8 ), e -  paraboloidal substrate (p =  100 mm), 
f -  cylindrical substrate-meridian plane, (p =  100 mm), g -  cylindrical substrate-sagittal plane (p =  100 mm), 
b -  “plane-cylindrical” substrate (p = 100 mm), i - “cylindrical-plane” substrate (p — 100 mm)

free (there is no figure in this case). In the case of cylindrical holo-lens we included 
aberration spots for a meridian plane (Fig. 2f) and sagittal plane (Fig. 2g).

4. “Plane-cylindrical” holo-lens

The cylindrical holograms are easy to manufacture. That is why it is worth dealing 
with cylindrical holograms in more detail. We can record a hologram on a plane 
substrate, then bend it into cylinder with radius p and read it out as a cylindrical one.
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Let us consider the set-up in Fig. 3. According to [9] the total wave aberration is 
given by:

0 0  n n-k
^ = 1 1 1  K t.1-

n = 0k = 01 = 0

The aberrations terms WntkJ are of the form:

» U .  =  v i
2» — k-lnl zk(JJ\ №

Kk,i = ( - V k+l

±ti(Vîn- iœn0- k- lpU k0- V î n-'(onr- k~lP[ÇÎ)'i,

(2n — 3) ! !
(n—k —l)\k\l\2k ’

Pq =  - 1/2 (xî +  yî),

C0q =  x x q +  yyq,

= r2 + z 2 — 2zzq.

The Çq contains the whole information about substrate geometry. 
For the recording part qe(i,o) is of the form

c W 2·

(32)

(33)

(34)

(35)

(36)

(37)

For the reproducing part qe(c,i) £q is of the form

£, =  2<T 2[1 -  (1 -  C Y )  >'2](1 -  Cz,). (38)

In order to use formula (32) we have to find the relation between each point

Fig. 3. “Plane-cylindrical” hologram (scheme in yz plane)
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A(x,y,z) on the plane hologram with a point A'(x',y',z) corresponding to it on the 
cylindrical hologram (Fig. 3). At first we can notice that x — x , so it is enough to find 
the relation between y and y because z and z are related by y, y and cylinder 
equation. We can see that the length of segment OA is equal to the length of arch 
OA'. Hence

<P = y/p (39)
where p is the radius of the cylinder. Having cp we can determine y

y =  psinyjp. (40)

For small (p we get y = y. Inserting (37) and (38) and putting n = 2 that corresponds 
to the third order aberration, we get the expression for the third order wave 
aberration of our set-up.

w3 = -  i  a*S"~ \  «J1G"-i  f!% +  xapCpx+ * ya \8 8

■F 2  y  ac^y "F ^ xfiC'px F  2  y ^ ^x  ^ ^ ^ y 2 ^

-  \  xyA 'xy- 1 «PFP-  i  acF"-xD,+  \  yDr+ \  yD * (41)

where: 

ap = r2,

ac = 2C~2(1—cos<p), 

P = x 2.

(42)

(43)

The prim coefficients correspond to the recording part of hologram and the bis 
coefficients correspond to the reproduced part of hologram. For example:

Sp = ± p{Vl-V*t ), (45)

S'p = ± p ( V l- V f) ,  (46)

s" = V ç(l — Czc)2 — Vf(l  — Cz-J2. (47)

The expression for the transverse aberration of the “plane-cylindrical” holo-lens 
is even more complicated than for cylindrical holo-lens. Figure lh shows the 
aberration spot for spherical aberration and Fig. 2h shows the aberration spot for 
coma in the case of collimation holo-lens used in the previous examples. The 
spherical aberration is similar in size to that for a plane holo-lens but it is not 
a circle. The coma has the same size and shape as coma for cylindrical holo-lens.

5. “Cylindrical-plane” holo-lens

We can also record a hologram on a cylinder, straighten it into a plane and
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reproduce as a plane hologram. Following the method from Sect. 4 we get

w3 = ~ \  *cPG -  i  i  a ¡S'p+ i  xa cC’x+ i  ya cCy+ i  xfSC'%P*

+ \y'PCpy+ ^*apCpx+ \y*pCpy- \ x2a x-  \ y  *Ay~ \ x y  Axy- \ y 2jiy 

~  \  xyA'xy- 2  7  PFp— 2  apFp+ ^ xDx+ i  y'Dy+ i  yDÿ. (48)

Figures li, 2i show aberration spots for spherical aberration and coma, 
respectively. The spherical aberration is similar to that obtained for a “plane- 
cylindrical” in Sect. 4. The coma is similar to that obtained for a plane holo-lens.

6. Final remarks

Comparing figures corresponding to spherical aberration (Fig. lc-e) and coma (Fig. 
2c-d) for spherical, ellipsoidal, and hyperboloidal substrate, we can see that the shape 
of aberration spot is the same and the size of it is very similar to each other. This fact 
is in agreement with our theoretical results presented in Sect. 2, in which using the 
approximate formula (5) we showed that for substrate listed above we got the same 
expression for the third order eikonal corresponding to spherical aberration (21) and 
coma (27). Thus, in the third order approximation each of the substrates considered 
can be replaced by a sphere with curvature C. The spots given in Fig. 2c and 2d can 
be approximated by a point, which corresponds to the spot for spherical holo-lens 
with the same value of parameter C (coma is compensated for this value of C). The 
fact that for a paraboloidal substrate the shape of aberration spot is also similar to 
the shape of aberration spots for a spherical substrate cannot be a general conclusion 
for all the cases, because we have not any general analytical formula as it was in the 
previous case.

Because it is easy to perform cylindrical holo-lenses we showed formulas for the 
third order aberration of: cylinder, “plane-cylindrical” and “cylindrical-plane” 
holograms. The formulas we have got are very intricate, so we are not able to 
investigate the aberration spots analytically. The examples of aberration spots for the 
spherical aberration and coma (Fig. Ih—i and 2h-i) are not encouraging. The shape of 
aberration spot corresponding to spherical aberration is not as interesting as for the 
cylindrical holo-lens (Fig. If) and it is greater than the spot for spherical holo-lenses. 
However, our results cannot be generalized for reasons given for paraboloidal 
holo-lens.

We do not insert the aberration spots corresponding to the very non-techno- 
logical quadrics.

The character of the numerical methods made us restrict our paper to choose one 
example instead of general consideration. We chose well described holo-lens.

In order to get better description of the influence of the substrate geometry on the
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image quality, we have to perform some new numerical investigations without the 
third order approximation. This problem will be the subject of the next paper.
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Аберрационные пятна третьего порядка голографических линз, 
полученных на поверхностях второго порядка
Исследованы аберрационные пятна для сферической аберрации и комы голографических линз, 
полученных на поверхностях второго порядка. Анализ был проведен численным и, по мере 
возможности, аналитическим методами. Были найдены формулы аберрации третьего порядка для 
голограмм, полученных на плоской поверхности и загнутой в цилиндр во время реконструкции. 
Были также исследованы аберрационные пятна голографических линз.
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