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Solutions of problems of optical diffraction
In anisotropic media by use of distributions

This article presents the solutions of the optical diffraction and of the diffraction of the mutual coherence in an anisotropic medium
from the optical information processing viewpoint. The resulting relations and practical example are given.

1. introduction

Optica) diffraction phenomena represent a basis
to modern optica) imaging methods. The hotograph-
ica) methods are especiaHy perspective, since they
a))ow high capacity and density of optica) informa-
tion storage, and a)so high rehability of the record
D-6l

So far, optica] diffraction has not been broadened
to anisotropic media, in a manner as it is required in
the fie)d of the optica) information processing.
A study of optica) phenomena in these media was
restricted mainty to methods of geométrica) optics
which cannot give satisfactory answers to many pro-
blems of practica) importance.

)n this artide some probtems of the optica) dif-
fraction in anisotropic media wit) be de)t with on
the base of mathematical theory of distributions. The
tempered distributions from the space used
in this paper, are )inear continuous functional
defined on the space .S(7?,) of basic functions [7].
The space F(7?,) is produced by functions having
a)) partia) derivatives. The basic function yeF(7?,,)
and their a)) partia) derivatives decrease to zero as
[l oo ([.r] is a norm of a vector a?) more quickiy
than an arbitrary power of [.r]"* does.

In the theory of distributions the Fourier tran-
sform is defined as an operator which transforms the
distribution /e 5" to the distribution g = F [/]e S/,
according to the re)ation (F[/J,y) = Flyl), where

FIYI(") = J*y =9exp(i.rg)(7x, ¢Y; ... 17X,

It is known that the Fourier transform of any distri-
bution from S' as wel) as its inversion betong to S'.
Both transformations map the space S' on itself in
a mutuaMy unique way, so that no other mathematical
concepts e.g. uttradistributions etc., need not be
introduced.
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2. Formulation of diffraction problem and
diffraction equations

We shall consider a nonconductive but opticatly
anisotropic medium (tr = 0). Let it be expressed by
a dieiectric tensor

Si0 0* 00"
0 »0 0 0
00 00

where

e. — are the principa) permittivities (which are

assumed to be constants),

H — are principa) indices of refraction.

We sha)) not consider a magnetic anisotropy or
another e)se.

As it is we)) known the Maxwe)! equations for
etectromagnetic fietd may be put in the fohowing
form

ATT: - 0. )
3

AF,.-V,F,+x.F) = 0,
i=|

y= 123, (3)

where
F, = F,(Xi,X2-Y3T) (for the both F, and 77,
a sinusoidal time dependence is assumed),
uF 2
= F", -~r!

T = cf.

The two systems of equation (2) and (3), as a whote,
form a set of tinear differentia) equations representing
an electromagnetic fietd in a nonconductive aniso-
tropic medium. Equations (2) and (3) are He)mho)tz
equations.

The formutation of the diffraction probtem consists
in expressing the etectric and magnetic fietd intensities
satisfying equations (2) and (3) by their boundary
vatues. Mathematica) mode) of the optica) diffrac-
tion assumes the etectric and magnetic fietd intensity
vectors to be zero outside the boundary of some re-
gion. Now, we shat) derive the diffraction equations
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which govern this kind of optical diffraction in an
anisotropic medium.

Let us consider a closed region G in an Euclidian
three-dimensional space P3, bounded by a surface

(V,J2-) = - (] Vy)= - J

where
{V,/} — function in G, continuous in parts,
[// — function / defined on P.
(Mx,) — angle between the axis x, and a normal
Mtaken from the outside to the surface P.
ft follows from (4)

V1= {V.[}-[1ly.cos(Mx,)". ©)

This expression defines a derivative of the distri-
bution / and is convenient for the representation of
our diffraction model. Using this expression once
more, we get

V*V.,[= {V,V,/j- [{V.,/}/cos(MxJIN-

- VA (HIFCOS (MX,) ¢ /).  (6)

The relation (6) will be used for derivation of the
differential expressions involved in equations (2) and
3).

If we put G. = / then by summation we get from
(6)

3 3 3
v*Y v,G = {V, Y VG}- YI{V,G,[ x
/=3 /=1 /=1
x cos(MX r/ T-V/[G,/cos(MX)/))[. (7)
Similariy, we get
3
-[{V.GjI*"VijiG 1,,M), (8
/=1

where
= V,COS(MX,)+V2005(MX2) + V 3005(MX3).

Inserting (7) and (8) into (2) and (3) we obtain
the resulting diffraction equations

AWEXYG, = /1, )
3
AN-v, Y VPHxyP. =", (io)

3
A= [{Y INpA+V Py Iri-jY [{V.P[/x

Xcos (MX.)

(B, M , y= 12,3

(V3" [/cos (Mx,)rlyj, f=1,2,3.

SO/MIOM o/ pfoA/itiiiS o/ opH'ra/ ApfUC/;bH ...

P that is continuous in parts. If Gt = P3—G, and
the function/has all partial derivatives continuous on
G and /=0 for a?eGt, then [g]

= f J* [/],.cos(Mx,)yJP
c n

(4)

3. Sotution of diffraction equations

Diffraction equations (9) and (10) will be solved
by the method of elementary solutions. We use the
Fourier transform and find a matrix of elementary
solutions belonging to these systems. The general
solution of these equations will be given by convolu-
tion of elementary solutions and right-hand sides of
the equations. Let us remark that the solution of
diffraction equations obeys the following relations

(AIHKIL Y)Y (1, Ay-xy) = (/1,y),

3
(AP)-T,. Y VP+x.P),y)
/A

3
- AY-WN OV YEXLY) = (PLY).
<l
3.1. Elementary solution

Elementary solutions belonging to (9) form the
diagonal matrix

[=11"ull, ™)

where nonzero elements are solutions of the following

equations

A/i 1y+X|/ny = 6 (12')

It is known [7] that these equations have the solu-
tion

4_
(I™x.

(13)
4 N 2 N

where is the blanket function,
= X1+X2+ X3.
Elementary solutions of (10) form the matrix

e=lkyll, (14)
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the elements of which are solutions of the equations
3
A [-VIVA+HNA+K )TN, = hot,
A:-1
where is the Kronecker symbol.
By appiying the Fourier transform to the prece-
ding system of equations, we get the fotiowing system

of aigebraica) relations
3

1%

+ (16)
Ar=l

-So/M/oM o/ fiwAVivii.s o/ opu'eo/ <7iyi*acl/oii...
where
-F{c,y(Xi,X2,"3)}-

The soiution of the system ()6) is given by the
foitowing reiation

AT(M, *2, *3) = (17)

where

(;0: (_/\+/\ +*i)('/\+/\+K2)('A+A+X,)+2AI\A'('A+A+A,)AA'('A r'+/\+/\)/\A:

L= ( — + A3+ NSN3
N2 = /\1/\2/\3 A1A2(_/\/\+/\3+ /\3)l
M = AN —ANA2+ A D),

£ = (RANATHAT)(FH*AN 4 G+ AG)RFALATI

"3 ATAAZ A —

W= (AN — M)A
i/20 = <€12;i/3] ==7,3, Y2" A23;

A= A4 A2+,

*("*I\/\+/\3+ /\3)/\1 /\2'

3.2. Resuiting soiution of diffraction equations

The resulting soiution may be found by convoiving
the eiementary solutions and right-hand sides of
diffraction equations. We get

TTAXI, *2,%3) *= (1~ *T77)(x,, 72,73 - (18)

Substituting (i3) and right-hand sides of (9) into
(18), we get

MNX, X2,*3)
iT ™~ xl [{VvATT,(N1273)}L-
N N AR N N N
4NN [(Y i_/\)'+(X2_A+(/\3_A)']"' 77 ) ((Xl' ) + (X2' + (XS' )T )+
77N (KN ((Xi- M)MH(X2- A)N+(3- ) 'Y 19)
77’ N ’/\ ’/\ N 7T
+ [77.( )1 [(A1-Al) +(h2-72) +(na. ~ PHP i1.t2.t3
The resuiting soiution of (10) is According to the same procedure, we get
3
F,(xi, X2, X9 = (» *E)(xi, X2, X3)-  (20)
7-1
3
™(-Yi, *2,X3) = Y' 7 (([{V],% (*, 22, "3)IL-- A [{"F,(Mi, *2, M)}PCoS(MA))X
7=1 F ;=i
X/\(_+ _/\1_/\2_/\2/\*3_/\3)+[/\(/\1/\2’ /\3)/\VA/\y(W AN1NQ_ND . /\3 _/\3)_([/\', /\2’ A)L-")X
XAA(W -Aj. Ao-Np X3-A3))TEA A A (21)
The magnetic (M\,) and electric (1FJ energies of where

the electromagnetic field involved in a region F of
an anisotropic medium may be determined by integra-
ting the corresponding energy densities, expressed
by the components 77, and F,:

= f"+7F,

/\, :fw,,7 F,

= Y2wi. (TTATTA+TTR),
w, = 1/2e0(/2TFA+AEMNNED).

4. Diffraction of mutually coherent
fight signals

Mutual coherence forms a basic quantity at an
optica) imaging with a partially coherent radiation.
In case of the anisotropic medium, we shall use the
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genera) definition of the mutua) coherence V in a form
of the matrix, the etements of which obey the speci-
fied system of differentia) equations. Thus

7'=17T)I, (22)

where
N

lim—_ f
r*oc 2T 4

T = X, "X

X<N44+7,70,72,7s)N.
1~4 is complex conjugate of
4 =

+,,4, N X, ¥ 3, N, Ta)-

4.). Forntutation of diffraction of mutua))y coherent
signats and derivation of diffraction equations

The etements of mutua) coherence matrix obey the
following two systems of differentia) equations

ATT-V,V V ,7*-"A N T1 =0,

o/ pwA/e/iM o/ upMcc/

To derive the diffraction equations for mutua)
coherence 7', we proceed in the same manner as in 2.,
assuming 7°, = 0 outside dosed surfaces 7 and 77,
in an Euclidian space 7% The resuming diffraction
equations wit) have the form

ATT,-V, V V r,,+r, = MFT, (24)
A=l
ANTT-M""N VM4 +4'7TT = 4T, (25
A=

where

= [{vrly], /[fA+vL"™([7TTL,")-
3

- ({4 ~ A4 COS(MM)3 "™ +
&1

+ Vi"'([7;,] cos(MM,)AJ).

4.2. Sotution of diffraction equations

for mutuaHy coherent signats

We sha)) use again the method of etementary

A=1 » 23) solutions.
VI 3"
2)<% -MT A" VATA -Ne -NTT -0, _
4.2.t. Etementary sotutions
A=1
where The elements y(?' of the matrix y™" of etementary
sotutions
3 37 et
N = — + W + - = 1
i T % T ars e Tz 9 (26)
“r betonging to the system (24) are given by the foUowing
equations written in the matrix form as fo))ows
4 - 0 0 -VitV2 o 0 V,V2 0 0 Tn 712 -
0 4 - 0 0 ViVv2 0 SV, Vi 0 721 722 - - 729
0 4 - 0 0 -V,V2 0 0 -V v
-V,Vv2 0 0 o o V2v2 0
V.,V ; 4 0 -v2va3
-Viv2 0 4) 0 o -v2v?2
SV tVi o 0 -v2v3 0 0 Jo’ 0
vV,V3 -v2v3 o 0
0 -V, v 0 -vV2v, 0 0 )™ 791 792 - - 799
00...0
00...0

00...0
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where
4 ' = J-F2+xn.

The solution of equations (27) is not of an easy

procedure. Here we give only the result

y() = lyMi
Alt O 0 A2 O 00 A3 O 0
0 A1 O 0 42 O 00 Aq3 O
0 0 <o O 0 ~12 O 0 <3
A1 O 0 gy O 0 A3 O 0
0 aApj O 0 A O 0 ~p3 O
o 0 ~22 O 0 ~22 O 0 ~23
A3t O 0 Agzp O 0 A3z O 0
0 ~31 O 0 ~32 O 0 ~3z3 O
0 0 <z O 0 ~32 O 0 ~33

The matrix of the elementary solution y™* differs
from y*) only by the constant. The elements jjf*
can be obtained from y”~ by substitution of xO3*for
X, The resulting solution will be derived by using
the matrix (28).

4.2.2. Resuming so)utlon of diffraction equations for mutuaiiy
coherent iight
After some rearrangements we get the following
result

3 3
r/Xi,X2,X3,yi,yiy3) =
V=1 /=1 A
X(xi,xr2.73.7i.y2,y3). (29)

The expression (29) holds for sinusoidal time signal
and the integration is performed on surfaces in
a tree-dimensional space 7. At special tasks, these
surfaces can be simplified so that the computation be
performed on computer. If this expression is interpre-
ted as an analytic signal, then the mean value of the
electric energy density in anisotropic medium is
proportional to the sum of the diagonal elements of
the matrix (22) multiplied by the squares of principal
indices of refraction [9]. In case of optical information

Lofof

&?#2on o/ o/ opn'ca/ t/lyroc//on ...

processing the relative values of the optical energy
should be known, the absolute value of it being usually
not required.

5. Point imaging in free space

The preceding theoretical results will now be made
clearer by introducing the imaging of a point in a free
space as an example. The point imaging is given by
diffraction equations (9) and (10); the right-hand sides
are the ¢-distributions. Hence it follows that the cor-
responding elementary solution represents mathema-
tically a point imaging, and is the solution of the given
task.

The elements of the matrix (16) can be found by
employing the inverse Fourier transform. The fol-
lowing holds

KA 32 32

3xt 3X, 3X, + 2+ A31+
31
+ X2 b *f**3 30 X2X,jy,
f1 = 33 AgA
" T g3 (MM,
2 _
e.i = I, 98 (zj+ X"V,
. . ® 132 2
3x2 3X2 \3x"
2 2
X g0 #X3og ) TN
2
B gunan (XY,
r 3* 2 ) % 32 \
B> [ 3T+ CARSURIRY o
32 2
™' g X, X27V,  (30)

where

[COS(%iXi+%62X2+"3X3)—2sin(4riX, +%62X2+"3X3)Ne,6Mr26Mr3

FIMFF2A+F 3N+ (XI+X2)M2+ (X T+ X 3)M3 + (K2+ *3Ne2/3 —KI(*2+X3)"? —

)2 (Xi+ X392 —X3(X, + X K3+ X, X2 X3.

The projection of the solution, e.g. the » —T
dependence is shown in figs. 1 and 2. The computation
was performed for an uniaxial crystal (ADP) with
"t = "2 = 15254, H3= 1.4798, n= 1, and to = ¢,
using relations (30). The integral 7(x,, X2, X3) was
estimated on computer, while the derivatives were cal-
culated numerically.

6. Conclusions

The optical diffraction in anisotropic media has not
been solved yet in the manner, shown in this article.
The task requires a special mathematical procedure
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Fig. i. The dependences c,,-T,

C33-T

2—r, and

Fig. 2. The dependences
C33-T

T, ~3—7, and

and cannot be solved by the methods of classical math-
ematical analysis. This is due to the fact that the solu-
tion of diffraction equations does not exist as a func-
tion but as a distribution. In the held of the distribu-
tions the diffraction equations have a clear meaning,
their solutions exists and — as it is shown — can be
found by the ordinary methods of derivation and inte-
gration.

The solution of the propagation of the mutual co-
herence in an anisotropic medium is much more
complex. The elements of the mutual coherence matrix
obey two partial differential equations, and the ele-
ments of the matrix of the elementary solutions satisfy
the matrix equation (27). However, then solutions can
be easily found. The solutions of diffractions equations

JMr7oa o/ ~ro7)7es!3 o/ api;'cal ~YracT/os ...

for mutual coherence are given by the elements of
elementary solution of diffraction equation for elec-
tric intensity vector. As an example the optical imaging
of the radiation point in an anisotropic medium is
shown. It can be seen in figs. |1 and 2 that it has the
same character as that in the isotropic medium, where
it is expressed by the Green function.

PeweHre npob6nembl ONTUYECKON Audpakumm
B aHU30TPOMHbLIX cpefax Mpyv UCMOSb30BaHWN
ancTpmnbyumm

B pa6oTe OMMUCLIBAETCS pelleHue Mpo6iemMbl ONTUYECKON
OMOPaKLMU ANs CNyyas KOFepeHTHOTO M YaCTWUYHO KOrepeH-
THOTFO CBETA B aHM3OTPOMHbLIX Cpeaax C TOUKM 3peHus obpa-

60TKM OMTUYECKON WHGopMaumn. BbiBefeHbl 3aBUCUMOCTU
1 NpuBeAeHbl WAKOCTpaLun.
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