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Solutions of problems of optical diffraction 
in anisotropic media by use of distributions

This article presents the solutions of the optical diffraction and of the diffraction of the mutual coherence in an anisotropic medium 
from the optical information processing viewpoint. The resulting relations and practical example are given.

1. introduction

Optica) diffraction phenomena represent a basis 
to modern optica) imaging methods. The hotograph- 
ica) methods are especiaHy perspective, since they 
a))ow high capacity and density of optica) informa­
tion storage, and a)so high rehability of the record 
[)-6].

So far, optica] diffraction has not been broadened 
to anisotropic media, in a manner as it is required in 
the ñe)d of the optica) information processing. 
A study of optica) phenomena in these media was 
restricted mainty to methods of geométrica) optics 
which cannot give satisfactory answers to many pro­
blems of practica) importance.

)n this artide some probtems of the optica) dif­
fraction in anisotropic media wit) be de)t with on 
the base of mathematical theory of distributions. The 
tempered distributions from the space used
in this paper, are )inear continuous functional 
defined on the space .S(7?„) of basic functions [7]. 
The space F(7?„) is produced by functions having 
a)) partia) derivatives. The basic function yeF(7?„) 
and their a)) partia) derivatives decrease to zero as 
[ur] oo ([.r] is a norm of a vector a?) more quickiy 
than an arbitrary power of [.r]"* does.

In the theory of distributions the Fourier tran­
sform is defined as an operator which transforms the 
distribution / e  5" to the distribution g =  F  [/] e S', 
according to the re)ation (F[/J, y) =  F[y]), where

F[y](^) =  J* y (-**)exp(i.rg)(7x, ¿Y; ... r7x„.

It is known that the Fourier transform of any distri­
bution from S' as wel) as its inversion betong to S'. 
Both transformations map the space S' on itself in 
a mutuaMy unique way, so that no other mathematical 
concepts e.g. uttradistributions etc., need not be 
introduced.

* institute of Radio Engineering and Electronics, Cze­
choslovak Academy of Sciences, Prague, Czechoslovakia.

2. Formulation of diffraction problem and 
diffraction equations

We shall consider a nonconductive but opticatly 
anisotropic medium (tr =  0). Let it be expressed by 
a dieiectric tensor

Si 0 0 * 0 0 "
0 2̂ 0 0 0
0 0 0 0

where
e,. — are the principa) permittivities (which are 

assumed to be constants),
H, — are principa) indices of refraction.
We sha)) not consider a magnetic anisotropy or 

another e)se.
As it is we)) known the Maxwe)! equations for 

etectromagnetic fietd may be put in the fohowing 
form

A77; -- o. (2)
3

A F , . - V , F , + x . F )  =  0, y =  1, 2, 3, (3)
i=l

where
F, =  F,(Xi,X2'-Y3'T) (for the both F, and 77,, 

a sinusoidal time dependence is assumed),
uF 2

=  F", - ^ r '

T =  cf.
The two systems of equation (2) and (3), as a whote, 

form a set of tinear differentia) equations representing 
an electromagnetic fietd in a nonconductive aniso­
tropic medium. Equations (2) and (3) are He)mho)tz 
equations.

The formutation of the diffraction probtem consists 
in expressing the etectric and magnetic fietd intensities 
satisfying equations (2) and (3) by their boundary 
vatues. Mathematica) mode) of the optica) diffrac­
tion assumes the etectric and magnetic fietd intensity 
vectors to be zero outside the boundary of some re­
gion. Now, we shat) derive the diffraction equations
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which govern this kind of optical diffraction in an 
anisotropic medium.

Let us consider a closed region G in an Euclidian 
three-dimensional space P3, bounded by a surface

P that is continuous in parts. If Gt =  P 3 —G, and 
the function/has all partial derivatives continuous on 
G and / = 0  for a?eGt ,  then [8]

(V ,/?-) =  - ( /  V,y) =  -  J =  f  J* [/],.cos(M x,)yJP
c n

=  ({V,/}" [ / /c o s  (M x,)r/yj, f = 1 , 2 , 3 .  (4)

where
{V,/} — function in G, continuous in parts, 
[ / /  — function /  defined on P.
(Mx,) — angle between the axis x, and a normal 

M taken from the outside to the surface P. 
ft follows from (4)

V ,/=  {V,/}-[/]y,cos(M x,)^. (5)

This expression defines a derivative of the distri­
bution /  and is convenient for the representation of 
our diffraction model. Using this expression once 
more, we get

V*V,/= { V ,V ,/j-  [{ V ,/} /c o s(M x J^ -

-  V* (r/JfCOS (MX,) ¿ / ) . (6)

The relation (6) will be used for derivation of the 
differential expressions involved in equations (2) and 
(3).

If we put G,. = /  then by summation we get from
(6)

3 3 3
v* Y  v, G, =  {V, Y  V,G,} - Y l[{  V ,G ,[/ x

/=3 /=1 /=1
x cos (MX J  r /  T- V /[  G ,/ cos (MX,) / ,)  [. (7)

Similariy, we get

3
- [ { V .G j l^ V j i G , ] , ,^ ) ,  (8)

/=1

where

=  V,COS(MX,)+V2COS(MX2)+ V 3COS(MX3).

Inserting (7) and (8) into (2) and (3) we obtain 
the resulting diffraction equations

A/Vy-t-Xy G, =  //,, (9)

3
A ^ - v , Y  v,P,+xyP;. =  ^ ,  (io)

;=-i
3

^  =  [ { Y / ^ p ^ + V / i P y / r / i - j Y  [{V ,P ,[/x
/=1

X cos (MX,.) ([EJ„ M) , y =  1,2, 3.

3. Sotution of diffraction equations

Diffraction equations (9) and (10) will be solved 
by the method of elementary solutions. We use the 
Fourier transform and find a matrix of elementary 
solutions belonging to these systems. The general 
solution of these equations will be given by convolu­
tion of elementary solutions and right-hand sides of 
the equations. Let us remark that the solution of 
diffraction equations obeys the following relations

(A//+K,.//,, y) (//, Ay-x,y) = (//, y),
3

( AP)-T,. Y  V,P,+x,.P), y)
/=1
3

-  (p,., A y - Vy ^  v ,y -x ,.y ) =  (P,., y).
<=.l

3.1. Elementary solution

Elementary solutions belonging to (9) form the 
diagonal matrix

/:= ll 'u l! . ( " )

where nonzero elements are solutions of the following 
equations

A/,,ÿ+x,/;,ÿ =  <5. (12.)

It is known [7] that these equations have the solu­
tion

4 _
(I^x. —

(13)
4 ^ 2 ^

where is the blanket function,

=  X1+X2 +  X3.

Elementary solutions of (10) form the matrix

e=lky l l ,  (14)
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the elements of which are solutions of the equations
3

^  [-V iV ^+ ^ iA + K ,)]^ . =  h.+ , (]5)
A:-l

where is the Kronecker symbol.
By appiying the Fourier transform to the prece­

ding system of equations, we get the fotiowing system 
of aigebraica) relations

3
+  (16)

Ar=l

where

-f*{c,y(Xi,X2,^3)}-

The soiution of the system ()6) is given by the 
foitowing reiation

,̂7(^1 , *2, *3) =  (17)

where

¿0 =  ( - ^ + ^  +  * i ) ( - ^ + ^  +  K 2 ) ( - ^ + ^  + x , ) + 2 ^ ^ ^ - ( - ^ + ^  +  ̂ , ) ^ ^ - ( - A r '+ ^  +  ̂ )^ A :

*("*^^+^3+ ̂ 3)^1 ^2'

^11 =  ( — ̂  +  ̂ 3 +  ̂ 3) — Â2^ 3'

1̂2 =  ^ 1^ 2^3 ^ 1^ 2(— ^^+^3 +  ̂ 3),
<7t3 =  ^ 1^ 3/ — ̂ ^ + ^ 2+ ^ 2).

^22 =  (*^^+^i+^i)(**-^^ +  ̂ 3 +  ̂ 3)**^1^3! 
^23 "  ^T^2^3 A*2̂ 3( —

3̂3 =  ( — ̂ -)-A^-}-?]^)( — ^2) — A:^2'

i/21 =  <̂12; i/3] ==7,3, /̂32 "  ^23; 
A:̂  =  ^ + ^ 2+ ^ 3.

3.2. Resuiting soiution of diffraction equations

The resulting soiution may be found by convoiving 
the eiementary solutions and right-hand sides of 
diffraction equations. We get

77^(xi, *2, *3) *= ( ^  * 77,) (x ,, ^2, ^3) - (18)

Substituting (i3) and right-hand sides of (9) into 
(18), we get

^ ( X i ,  X2, *3)

j T ^  r /  _  [{V ^7 7 ,(^ .^2^3)}L·
4^2^ /  ' [ ( . Y i - ^ ) '+ ( x 2 - ^ + ( ^ 3 - ^ ) ' ] '" 77^ ) ^ ( ( x i - ^ ) '+ ( x 2 - ^ + ( x 3 - ^ ) T ^ ) +

+  [77, ( ^ , ^ , ^ ) ] ^
77^ (k' ̂  ((xi -  ̂ i)^+(x2 -  ̂ 2)^+( *̂3 -  ̂ 3/ )  ' ' )̂

[ ( ^ l - ^ l )  + ( ^ 2- ^ 2) + ( ^ 3- ^ ]
2H /2 7 T i1 .t2.t3 (19)

The resuiting soiution of (10) is According to the same procedure, we get
3

F , (x i, X2, X3) =  ( ̂  * Ê, ) (x i, X2, X3) - (20)
7=1

3 3
7^-(-Yi, *2 , X3) =  Y ' j* (([{ V j,% (^ , ^2 , ^3)}L·- ^  [ { ^ F , ( ^ i ,  ^2 , ^)}]PC0 S(M^,))X

7=1 F ;=i

X ^ ( - + - ^ 1 . ^ 2 -^ 2 ^ * 3 -^ 3 )+ [^ (^ 1 ^ 2 ,  ^ 3 )^ V ^ ^ y (W -^ 1 ^ 2 -^ 2 .  ^ 3 - ^ 3 ) - ( [ ^ l ,  ^2 , ^ )L -" )x

x ^ ^ ( W - ^ i .  ^ 2 - ^ 2 , X3- ^ 3) )7 F ^ , ^ , ^ .  (2 1 )

where
=  1/2w i. (77^77^  +77^), 

w, =  l/2eo(/?ÎF^+^Æ ^+n^Æ ^).

4. Diffraction of mutually coherent 
fight signals

Mutual coherence forms a basic quantity at an 
optica) imaging with a partially coherent radiation. 
In case of the anisotropic medium, we shall use the

The magnetic (M̂ ,,) and electric (1FJ energies of 
the electromagnetic field involved in a region F of 
an anisotropic medium may be determined by integra­
ting the corresponding energy densities, expressed 
by the components 77, and F,:

=  f " + 7 F ,

,̂ = f w„7 F ,
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genera) definition of the mutua) coherence V in a form 
of the matrix, the etements of which obey the speci­
fied system of differentia) equations. Thus

7'=!I7T)I,  (22)

where

1 ^
TT =  lim —  f  X,, ^a)X

r-*oc 2T 4

X< ^ '4 4 + 7 ,  7 i , 7 2 ,7 s )^ . 

1 ^ 4  is complex conjugate of

4  =  + , ,4 ,  ^ , Xi, x*2, X3, ^ , Ta) -

4.). Forntutation of diffraction of mutua))y coherent 
signats and derivation of diffraction equations

To derive the diffraction equations for mutua) 
coherence 7", we proceed in the same manner as in 2., 
assuming 7 ,̂ =  0 outside dosed surfaces 7?̂ . and 7?, 
in an Euclidian space 7?̂ . The resuming diffraction 
equations wit) have the form

ATT,-V, V  V , r , , + ^ r ,  =  MfT,  (24)
Â = l

A ^'TT - Vi-"' ^  V ^ '4 ,+ 4 '7 T  =  4 T „  (25)
^=1

where

=  [ { v r / y ] , , /f^ + v L '" ([7 T L „ ^ )-
3

- ([{ 4 ^  Aj}] 4  COS(MM,) 3 ^  +
&=1

+  Vi"'([7;,]^cos(MM,)^J).

The etements of mutua) coherence matrix obey the 
following two systems of differentia) equations

ATT-V, V  V , 7 ^ - ^ A , ^  71, =  0,
A =  1 ^

V I  3 ^
z ) < % - VÎT' ^  V ^ 7 ^ , - ^ e , - ^  7T - 0,

(23)

A =  1

where

3 '  3  ̂ et'
^ =  —  +  w  +  -

C7 i 3^2 ^T3

4.2. Sotution of diffraction equations 
for mutuaHy coherent signats

We sha)) use again the method of etementary 
solutions.

4.2 .t. Etementary sotutions

The elements y(?' of the matrix y'"' of etementary 
sotutions

=  I l l 'l l  T7 9 (26)

V<7'
betonging to the system (24) are given by the foUowing 
equations written in the matrix form as fo))ows

4 " 0 0 - V t V 2 0 0 - V , V 2 0 0 7n  7 1 2  -
'

0 4 ' 0 0 - V 1 V 2 0 0 - V , V i 0 721 722 - - 729
0 0 4 " 0 0 - V , V 2 0 0 - V , v , .

- V , V 2 0 0 0 0 - V 2 V 2 0 0

0 - V , V ; 0 0 4 ' 0 0 - V 2 V 3 0

0 0 - V 1 V 2 0 0 4 ) 0 0 - V 2 V 2

- V t V i 0 0 - V 2 V 3 0 0 J O ' 0 0

0 - V , V 3 0 0 - V 2 V 3 0 0 0

0 0 - V , v , 0 0 - V 2 V , 0 0 z ) ^ ' 791 792 - - 799

Ó0. . . 0  
0Ó ... 0

00 . . .  Ó

6



B. Stàdnik &?/#?/on o /  o /  opn'ca/ t//yroc//on . . .

where
4 '  =  J - F 2 + x ^ .

The solution of equations (27) is not of an easy 
procedure. Here we give only the result

y(*) =  IlyMlI

^ l t 0 0 ^12 0 0 0 ^13 0 0

0 ^11 0 0 <h 2 0 0 0 ^13 0

0 0 <?11 0 0 ^12 0 0 <?t 3

^21 0 0 ^22 0 0 ^23 0 0

0 ^ 2 i 0 0 ^22 0 0 ^23 0

0 0 ^21 0 0 ^22 0 0 ^23

^ 3 t 0 0 ^32 0 0 ^33 0 0

0 ^31 0 0 ^32 0 0 ^33 0

0 0 <?31 0 0 ^32 0 0 ^33

The matrix of the elementary solution y^* differs 
from y**) only by the constant. The elements yjjf* 
can be obtained from y ^  by substitution of xO** for 
x ^ . The resulting solution will be derived by using 
the matrix (28).

4.2.2. Resuming so)ut!on of diffraction equations for mutuaiiy 
coherent iight

After some rearrangements we get the following 
result

3 3
r,/X i,X 2 ,X 3 ,y i,y i,y 3 ) =

V=1 /=1 ^
X (x i,xr2 .^ 3 .7 i.y 2 ,y 3 ). (29)

The expression (29) holds for sinusoidal time signal 
and the integration is performed on surfaces in 
a tree-dimensional space 7?̂ . At special tasks, these 
surfaces can be simplified so that the computation be 
performed on computer. If this expression is interpre­
ted as an analytic signal, then the mean value of the 
electric energy density in anisotropic medium is 
proportional to the sum of the diagonal elements of 
the matrix (22) multiplied by the squares of principal 
indices of refraction [9]. In case of optical information

processing the relative values of the optical energy 
should be known, the absolute value of it being usually 
not required.

5. Point imaging in free space

The preceding theoretical results will now be made 
clearer by introducing the imaging o f a point in a free 
space as an example. The point imaging is given by 
diffraction equations (9) and (10); the right-hand sides 
are the ¿-distributions. Hence it follows that the cor­
responding elementary solution represents mathema­
tically a point imaging, and is the solution of the given 
task.

The elements of the matrix (16) can be found by 
employing the inverse Fourier transform. The fol­
lowing holds

3^ 32 32

3xt 3x, 3x,
31

+  X2 1 *f**33*2
33

3x2

+  ^2 +  ̂ 3 j 
X2X,jy,

+

f ,!  =
3.x, 3*2

32
e .i =  —3x, 3%3

(^+ ^3M ,

(zj+X^V,

^23 — 4- 32 /32 32

3x2 3x2 \3x^

+Xt
32

+X3 -
32

- +X, X;
3x2 3x2

32
?23 3*2 3^2 

32 ' ^

(^ + x ,)y ,

32r  3* 32 / 32 32 \

'33 *  [ 3^T+ 3? + + * '+ * 1

X, X2^ V,
32

*Xt 3x,

2 +

32

!+
(30)

where

! f  (* f  [cos(%iXi+%2X2+^3X3)—?sin(4riX,+%2X2+^3X3)№,6Mr26Mr3
* i ^ l + * 2 ^ + * 3 ^  +  (X l+ X 2 )^ 2 + (X l+ X 3 )^ 3  +  (K2 +  *3№2^3 — Kl(*2+X3)^? —

— X2 (Xi+X3)%2 —X3(x,+X 2)k3 +  X, X2 X3.

The projection of the solution, e.g. the ^  — T 
dependence is shown in figs. 1 and 2. The computation 
was performed for an uniaxial crystal (ADP) with 
"t =  "2 =  15254, H3 =  1.4798, n =  1, and to =  c, 
using relations (30). The integral 7 (x , , X2, X3) was 
estimated on computer, while the derivatives were cal­
culated numerically.

6. Conclusions

The optical diffraction in anisotropic media has not 
been solved yet in the manner, shown in this article. 
The task requires a special mathematical procedure
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Fig. i. The dependences с, , - т ,  2 — r, and
сзз-т

Fig. 2. The dependences т, ^3 —т, and
Сзз-т

and cannot be solved by the methods of classical math­
ematical analysis. This is due to the fact that the solu­
tion of diffraction equations does not exist as a func­
tion but as a distribution. In the held of the distribu­
tions the diffraction equations have a clear meaning, 
their solutions exists and — as it is shown — can be 
found by the ordinary methods of derivation and inte­
gration.

The solution of the propagation of the mutual co­
herence in an anisotropic medium is much more 
complex. The elements of the mutual coherence matrix 
obey two partial differential equations, and the ele­
ments of the matrix of the elementary solutions satisfy 
the matrix equation (27). However, then solutions can 
be easily found. The solutions of diffractions equations

for mutual coherence are given by the elements of 
elementary solution of diffraction equation for elec­
tric intensity vector. As an example the optical imaging 
of the radiation point in an anisotropic medium is 
shown. It can be seen in figs. I and 2 that it has the 
same character as that in the isotropic medium, where 
it is expressed by the Green function.

Решение проблемы оптической дифракции 
в анизотропных средах при использовании 

дистрибуции

В работе описывается решение проблемы оптической 
дифракции для случая когерентного и частично когерен­
тного света в анизотропных средах с точки зрения обра­
ботки оптической информации. Выведены зависимости 
и приведены иллюстрации.
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