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Propagation of a short pulse through human breast tissues is studied by numerically solving
the diffuse equation. Different numerical methods, such as Monte Carlo and finite difference time
domain, have been used to study the short pulse laser propagation through biological tissues. In
this paper, we use boundary integral method to study the laser pulse–tissue interaction. The diffuse
equation is used to examine the propagation of laser into biological tissues, and boundary integral
method is used to alter this equation to the integral form and the result is solved by using boundary
element method. To verify the precision of a boundary element method code, we compared
the obtained results with those obtained by finite difference time domain method. In addition,
the effects of different optical parameters of breast tissues, i.e., reduced scattering and absorption
coefficients, on time evolution of a diffusely reflected pulse are studied.
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1. Introduction

Recent rapid advances in the short pulse laser with duration of picoseconds have
opened up many emerging areas and a lot of attention is now being paid to the transient
diffuse equation in biological tissues. A blooming application in this domain is optical
tomography which is able to detect tumors in biological tissues by utilizing the short-
-pulsed near infrared laser [1]. This imaging can be applied to study the properties of
biological tissues [1–5]. The optical imaging has several advantages over the estab-
lished imaging methods such as ultrasound, X-ray computed tomography, and mag-
netic resonance imaging. Moreover, the short-pulse near infrared laser is a safer and
cheaper alternative to traditional imaging techniques [5]. The temporal diffused signals
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convey the additional information which is often not available in large pulse width or
continuous wave lasers. In optical imaging with short-pulse irradiation, in spite of con-
tinuous wave lasers, the time derivative of the radiation intensity in the diffuse equation
can no longer be neglected. As compared with a continuous wave, in short-pulse optical
tomography, more information can be achieved by studying the temporal distribution
of reflectance [4–11]. That is because the multiple scattering of photons inside tissues
can increase the temporal distribution of reflected signals [1, 12]. 

In 1989, PATTERSON and his colleagues analytically solved the diffuse equation for
a special case. In this study, the illuminating source is a Dirac delta and the sample is
a semi-infinite slab [12]. In 2001, the optical properties of the female breast tissue dur-
ing femtosecond laser pulse propagation were studied. In this paper, the experimental
data of the temporal spread of the ultrashort pulse during the transmission through
the breast tissue have been analyzed using the Patterson analytical expression derived
from the diffusion theory [13]. 

As presented in [5, 12, 13], the behaviour of a short-pulse laser inside biological
tissues can be studied by the diffuse equation, but for a complicated shape of a phantom
or expanded laser beam, the solution of this equation is difficult, so it should be
solved by numerical methods like Monte Carlo (MC) and finite-difference time-do-
main (FDTD). However, MC and FDTD are time-consuming [11–20] and they are not
suitable for special applications like image reconstruction, so a new fast method must
be used.

Boundary integral method (BIM) can also be used to solve the diffuse equation.
As this method requires a surface tessellation, the computation time is reduced and
the accuracy of results increases [21]. The diffusion equation in a frequency domain
has also been numerically solved by BIM [22–27]. 

As mentioned earlier, most studies of the propagation of a short laser pulses in
the breast tissue are based on results presented in Patterson’s papers. But, in current
studies, the illuminating source is a Gaussian beam and Patterson’s assumption cannot
be applied. Hence, the analytical solution is not appropriate. In this paper, to simulate
the diffusion of a photon, a numerical method based on the Green theorem is presented.
First, the appropriate Green function to convert the diffusion equation to the integral
form by using Green’s second theorem is presented [25]. Next, the surface integral is
discretized by using boundary element method (BEM) and the resulting integral is nu-
merically solved [23]. Using this technique, we have calculated the intensity and tem-
poral evolution of a diffusely reflected pulse from the tissue. Furthermore, the effects
of absorption and the reduced scattering coefficient on time broadening of a diffusely
reflected pulse are also studied. In [24], we have solved the temporal diffuse equation
and the penetration of diffused photon intensity inside a biological sample has been
calculated. But, in this work, the effects of reduced scattering on reflectance are stud-
ied. These results show that the effects of optical properties on reflectance can be stud-
ied by BIM. 
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2. Review of diffuse equation
Let us consider a pulsed collimated beam incident on a biological medium (female
breast tissue) perpendicularly to its boundary plane. The propagation of this pulse in
the medium is described by the diffuse equation [27]

(1)

where Φ (r, t) and Σ (r, t) are, respectively, the fluency and the isotropic source term at
the position r and at the moment of time t. The velocity of light is shown by c. The pa-
rameter D = [3(a + σ ')]–1 is the diffusion coefficient, where a and σ ' = σ (1 – g) are
the absorption and the reduced scattering coefficients, respectively; σ  and g are
the scattering coefficient and the anisotropic factor, respectively. A boundary condi-
tion is given by

(2)

That CR = (1 + R)/(1 – R) where R is the Fresnel reflection coefficient;  is the normal
vector and rs is the position vector on the boundary of the sample Γs. Note,

The boundary integral method is based on the Green function [22]. The Green
function of Eq. (1) in the domain Ω  can be considered as a solution of the following
equation:

(3)

where δ  is the Dirac delta function. The Green function G(r, r'; t, t' ) can be interpreted
as the intensity of light generated by a point flash light located at the position r' and
applied at the time t'. 

First, by applying the Laplace transform  on t in
Eq. (3), the equation is transformed into

(4)

then Eq. (4) can be rearranged as

(5)

where κ 2 = s /cD + a /D. Then, applying the Fourier transform 
 on r, we obtain
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(6)

where  is the Fourier transform of G. The inverse Fourier and Laplace transforms
on the Green function stated in Eq. (6) give the Green function as [25]

(7)

where H(t – t' ) is the Heaviside function.
For an extended source, reflectance is obtained by using Green’s second theorem:

(8)

The intensity of a diffused short pulse can be calculated from Eq. (8) that is
the integral form of the diffusion equation. BEM can be used to solve Eq. (8). In
this method, the boundary of the sample is first discretized to elements. Then, the ob-
servation point r is located on the surface of the tissue and an equation containing flu-
ency at that point is achieved. Locating the observation point on different nodes,
a system of equations is obtained which gives the fluency at those points. Finally, one
can solve that set of equations and calculate the fluency at any arbitrary point inside
and outside the sample [23].

3. Results

In this paper, we use BEM to solve the diffuse equation. At first, the precision of results
obtained by BEM was evaluated by comparing them with the results obtained by
FDTD method. Figure 1 illustrates the value of maximum of reflectance for a different
number of nodes in FDTD method and for a specific mesh resolution in BEM.
The illuminating beam has Gaussian temporal evolution with duration τ = 10 ps and
the sample is a semi-infinite medium with the absorption and reduced scattering co-
efficients of a = 0.02 mm–1 and σ ' = 1.5 mm–1, respectively, and n = 1.3. These optical
properties are similar to the female breast tissue [25]. The radial distance from the lo-
cation of illumination ρ, is a key parameter in diffuse optical imaging; in this graph
ρ = 1.0 mm. We observe that by increasing the number of nodes in the former tech-
nique the corresponding results approach those obtained by BEM while the computa-
tional time in FDTD is more than four times longer [24].
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After verifying the precision of the method, the effects of different parameters on
temporal evolution of a diffusely reflected pulse from the breast tissue are studied.
Temporal broadening of the reflected pulse is due to scattering and absorption of dif-
fused photons in the tissue. Therefore, it is important to study such effect in more detail.
The broadening of reflectance is presented in Fig.2. The results presented in this figure
show that the peak value of the reflectance increases for larger scattering coefficients.
That is because in such a case more photons are scattered from the direction of illu-
mination and, therefore, the scattering probability increases. The results are in agree-
ment with those reported in [24–27]. One can see that the duration of a reflectance pulse
is altered by increasing the value of reduced scattering. So, the dependence of pulse
duration on scattering is studied (Fig. 3). One can see that the pulse is broadened by
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Fig. 1. Comparison between the calculated value of the maximum of reflectance using BEM and FDTD.
The error between BEM and FDTD is less than 10%. 

10–4

10–5

10–6

0 20 40 60 80 100

0.6 mm–1

ρ = 5.5 mm
a = 0.02 mm–1

τ = 10 ps

Time [ps]

R
ef

le
ct

an
ce

 [W
/m

m
2
]

1.2 mm–1

1.8 mm–1
σ(1 – g) =

Fig. 2. Temporal distribution of reflectance for different values of reduced scattering coefficient. The op-
tical properties are similar to the female breast tissue [25].
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an increase of the reduced scattering coefficient. The results are best fitted to
τ ∝ exp(σ ' /1.14). It shows that the reflected pulse duration increases exponentially by
increasing the reduced scattering coefficient. That is because for larger reduced scat-
tering, the photons can be scattered and diffused to farther distance and some diffused
photons undergo larger delay time before coming back to the surface. 

To investigate the effect of the absorption coefficient on the reflectance, the tem-
poral distribution of reflectance is calculated for two different values of the absorption
coefficient (Fig. 4). One can see that the peak value of reflectance decreases by an in-
crease of the value of the absorption coefficient, which is because, for a larger absorp-
tion coefficient, the majority of launched photons are absorbed in the tissue and
therefore the intensity of the reflectance decreases.
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Fig. 3. Duration of reflectance pulse for different values of reduced scattering coefficient.
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Fig. 4. Temporal distribution of the reflectance for two different values of absorption coefficient.
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In addition, in Figure 4, the pulse duration of reflectance for two different values
of the absorption coefficient is not the same. The reflectance for different values of
the absorption coefficient is depicted in Fig. 5. It can be seen that the pulse duration
of the reflectance decreases when the absorption coefficient increases; the results are
best fitted to τ ∝ exp(–a /0.27). As we mentioned, for a larger absorption coefficient,
the majority of photons are absorbed in the tissue and the remaining photons which
are scattered in close areas can return to the surface of the tissue and therefore they
undergo lower delay time before coming back to the surface. 

As we can see from the figures, the variation in pulse duration of reflectance for
breast tissues is proportional to exp(–a /0.27 + σ ' /1.14), so an increase in absorption
and reduction of scattering coefficients, as is the case in cancer process, lead to
the modification of the duration of the reflectance pulse. Therefore, while studying
the duration of the reflectance pulse, we can collect some information about the cancer
progress. That is because, during the progress in malignancy, the value of scattering
and the absorption coefficients of lesions change, and these changes can modify
the width of the reflected pulse. Therefore, the variation in broadening of the reflected
pulse can be assumed as a criterion in optical mammography. 

4. Conclusions
In this paper we used BIM to convert the differential diffusion equation to the integral
form. The resulting integral equation is numerically solved by using BEM. Propagation
of short laser pulses through the female breast tissue is studied by this method. It is
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Fig. 5. Temporal distribution and duration of the reflectance for different values of absorption coefficient.
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shown that the optical parameters of the tissue, i.e., absorption and scattering coeffi-
cients, significantly change the pulse duration of diffusely reflected pulse from the sur-
face of the tissue. The results are compared with those obtained by FDTD method, and
a good agreement between them is observed. The study of propagation of the pulse
laser into the breast tissue by using BEM is the main aim of this paper. Moreover,
the evaluation of this numerical method to simulate the diffusion of ultrashort pulse
laser is another important aim. As mentioned in Introduction, the diffusion of optical
imaging requires a fast and accurate numerical method. Results presented in current
study show that the BEM can be applied as a fast method. The accuracy of results ob-
tained by BEM can be compared with FDTD. The presented results prove that the ac-
curacy of BEM is high and this numerical method can be used as an effective method
in optical mammography.
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