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We present a novel spatial pooling strategy and the results of an extensive multi-scale analysis of
the well-known structural similarity index metric (SSIM) for objective image quality evaluation.
We show, in contrast with some previous studies, that even relatively simple perceptual importance
pooling strategies can significantly improve objective metric performance evaluated as the corre-
lation with subjective quality assessment. In particular, we define an attention and quality driven
pooling mechanism that focuses structural comparisons within the SSIM model to only those pixels
exhibiting significant structural degradations. We show that optimal objective metric performance
is achieved over very sparse spatial domains indeed that ignore most of the signal data. We also
investigate an explicit breakdown of the structural models within SSIM and show that in combi-
nation with the proposed attention and quality driven pooling some of these models represent well
performing metrics in their own right, when applied at appropriate scale for which there may not
be a single optimal value. Our experiments demonstrate that the augmented SSIM metric using
the proposed pooling model provides performance advantage on an extensive LIVE dataset cov-
ering hundreds of degraded images and 5 different distortion types compared to both conventional
SSIM and state-of-the-art objective quality metrics.
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1. Introduction

The performance of digital imaging applications for representation of visual informa-
tion and communication depends greatly on the quality of input and output images,
making efficient and robust estimation of image quality a priority. It would therefore
be of great advantage if a transmission system is able to quantify quality degradations
that occur, so that it can maintain control and possibly enhance the quality of output
data [1]. The most reliable way of assessing image quality is subjective trials, by hu-
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mans as ultimate users of such images. Subjective (mean opinion) scores however are
impractical, slow and expensive to obtain in most applications. An objective image
quality metric can predict perceived quality computationally and can be employed to:
i ) benchmark and monitor compression and processing algorithms and ii ) optimize
their performance for a given application (content, bandwidth, packet loss...) [1]. How-
ever quantifying perceived quality objectively (computationally) is not easy.

Conventional metrics such as mean squared error (MSE) and peak signal-to-noise
ratio (PSNR) are still used even though better understanding of the quality paradigm
has produced more robust image/video quality metrics [2]. To be considered useful,
metrics generally must demonstrate relevance by being in agreement with subjective
opinions of observers. An ideal image quality measure should be able to describe
the amount of distortion, the type of distortion, and the distribution of errors in
a degraded image with minimal complexity [3].

Objective metrics of image quality can be classified according to the availability
of an original (distortion free) image, with which the distorted image is to be compared,
into three major categories, namely, no-reference (NR) or blind quality assessment,
reduced-reference (RR) quality assessment, and full-reference (FR) quality assess-
ment [3]. Each of the three categories of metrics has its own advantages and disadvan-
tages.

Among the full-reference image quality assessment (IQA) algorithms, the struc-
tural similarity index (SSIM) [4] has become a de facto standard. Since natural scenes
are highly structured, the human visual system (HVS) is highly adapted for extracting
structural information from a scene, SSIM compares structural information between
the reference and distorted images through comparisons on luminance, contrast and
structure [4, 5]. The three comparisons are combined to provide a final quality score
(SSIM), in the range [–1, 1].

A number of modifications have been derived from SSIM [6–15] with the aim of
improving correlation with subjective ratings. In [6] a multi-scale structural similarity
index (MS-SSIM) is proposed which evaluates structural similarity at different reso-
lutions/scales. CHEN et al. improved SSIM by using edge information as the most im-
portant information in their gradient-based structural similarity (GSSIM) [7]. In [8],
images are not compared directly, but their similarity is measured by SSIM between
feature maps (corner, edge and symmetry maps). In [9] the structure term is replaced
with additional terms that depend on regional statistics.

SSIM and metrics derived from it initially produce a local quality/distortion map
over the image space (scene). In the second stage, local quality/distortion scores are
combined over the image using a spatial pooling strategy [10]. Numerous methods
have been used for spatial pooling of local SSIM scores [11–15]. Strategies used are
visual fixation [11], quality-based weighting [11, 12], region-type weighting [13], in-
formation content weighting [14], and visual attention information (with eye move-
ments) weighting [15].

Originally designed for comparison of two monochromatic images, SSIM is addi-
tionally used for quality assessment of color images, image fusion and video quality
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assessments [2]. The application scope of SSIM today goes far beyond its original pur-
pose, and it has been employed in video object tracking, coding, image denoising, im-
age classification, and recognition [1, 2]. The performance of SSIM on different image
datasets has been demonstrated in [14, 16–18].

Contributions of three SSIM components: luminance, contrast and structure to
quality evaluation of common image artefacts are analyzed in [19] where a publicly
subject rated image database (LIVE) was used for performance analysis of the indi-
vidual components and their pairwise products.

Research presented in this paper represents an extension of SSIM analyses reported
in [6, 11, 12, 19]. Regarding [6] in which the results of SSIM multi-scale analysis of
two distortions (JPEG and JPEG2000 compression) are presented, this paper addresses
the multi-scale analysis of three further types of distortion: white noise addition, blur-
ring and fast fading. Comparing two analyses of the lowest SSIM scores on quality
assessment in [11, 12], detail analyses of individual components and their products for
five scales are presented in our research, while [19] presents similar analysis in a single
scale. Our research confirms some of the findings from [6, 11, 12, 19], but also
presents new significant results for image quality evaluation.

The rest of the paper is organized as following. A brief description of the structural
similarity index is provided in Section 2. Section 3 presents the integration of signif-
icant local quality scores in the final quality measure. The influence of the individual
components, and their products, on the image quality assessment was analyzed in detail
through multi-scale analyses in Sections 4 and 5.

2. Structural similarity index

Based on an observation that HVS is highly adapted for extraction of structural
information from a scene, [4] introduces a new image quality paradigm proposing
that quality can be evaluated through structural similarity between two non-negative
signals x and y (say, original and distorted image) measured by comparing their lumi-
nance l(x, y), contrast c(x, y) and structure s(x, y):

(1)

(2)

(3)

where μ x and μ y are the local sample means,  and  are the sample variances,
and σ xy is the correlation of local x and y samples. Constants C1, C2, and C3 are used
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to avoid instability when the denominator is close to zero (typically C1 = (K1L)2,
C2 = (K2L)2 and C3 = C2/2, where L is the dynamic range of the pixel values – 255 for
8-bit grayscale images, K1 = 0.01 and K2 = 0.03).

The multiplicative form of SSIM model for comparison of x and y signals is, 

(4)

where α, β  and γ  are the parameters used to define the relative importance of the three
components. Typically, the importance of luminance, contrast and structure terms are
equal, α = β = γ = 1. This results in a specific form of the SSIM model (C3 = C2/2), 

(5)

The universal image quality index (UQI) proposed in [5] corresponds to the special
case of Eq. (5) where C1 = C2 = C3 = 0.

SSIM index, Eq. (5), is evaluated at all pixels locations, by using an 11×11 circular
symmetric Gaussian weighting function [4]. Overall quality is obtained as a mean of
local SSIM values.

Pixel-domain full-reference examples are shown in Figs. 1–4, where the goal is to
evaluate the quality of image (b) with a given perfect-quality reference image (a).
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Fig. 1. Original image (a); distorted image (created by JPEG2000 compression) (b); final SSIM local
quality map computed using Eq. (5) – SSIMmean = 0.609 (c); luminance preservation map computed using
Eq. (1) – lmean = 0.995 (d); contrast preservation map computed using Eq. (2) – cmean = 0.842 (e); structure
preservation map computed using Eq. (3) – smean = 0.706; subjective quality score (DMOS (differential
mean opinion score)) of this image is 68.4 out of 100 (f ).
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The resulting quality/distortion maps are shown in (c)–(f) images: brighter indicates
better quality (larger local quality value).

SSIM information preservation maps shown in Figs. 1c, 2c, 3c and 4c reflect
the spatial variations of perceived image quality. Careful inspection shows that lumi-

Fig. 2. Original image (a); distorted image (created by JPEG compression) (b); final SSIM local quality
map computed using Eq. (5) – SSIMmean = 0.690 (c); luminance preservation map computed using
Eq. (1) – lmean = 0.999 (d); contrast preservation map computed using Eq. (2) – cmean = 0.929 (e); structure
preservation map computed using Eq. (3) – smean = 0.742; DMOS score of this image is 80.0 out of 100 (f ).
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Fig. 3. Original image (a); distorted image (created by Gaussian blurring) (b); final SSIM local quality
map computed using Eq. (5) – SSIMmean = 0.572 (c); luminance preservation map computed using
Eq. (1) – lmean = 0.997 (d); contrast preservation map computed using Eq. (2) – cmean = 0.701 (e); structure
preservation map computed using Eq. (3) – smean = 0.785; DMOS score of this image is 73.0 out of 100 (f ).
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nance information is almost perfectly preserved in all examples, so the SSIM map is
practically a product of the contrast and structure degradation maps.

3. Visual importance pooling for image quality assessment
In this paper we explore the possibility of improving performance of the SSIM metric,
its constituent components and their pairwise combinations, by assigning visual im-
portance weights to local quality values during the pooling process. It is intuitive that
different image regions may be of different importance to observers so methods that
selectively pool quality scores spatially are an appealing possibility for improving
SSIM scores.

There are two hypotheses which may influence human perception of image quality.
The first is visual attention and gaze direction – where a human looks, the second that
humans tend to perceive regions of poor quality in an image with more severity than
good ones. Inspired by these observations, we investigate pooling local quality scores
using the concept of perceptual importance by pooling the lowest local quality scores.
These lowest scores are pooled as sample percentiles [11, 12].

In our further discussion of percentile scores, we assume that a quality map of
the image has been evaluated using one of the quality metrics discussed above,
Eqs. (1)–(3) and (5). Given a quality map, we arrange the local quality values obtained
using Eqs. (1)–(3) and (5) (or their pairwise products) in ascending order of magnitude
and a mean score is calculated at the end from the lowest p% of these values. The pixels
that do not fall within the percentile range are ignored.

Even with this simple approach, many weighting mechanisms are possible. Here,
we consider simple percentile weighting, yet the question remains – what percentile

Fig. 4. Original image (a); distorted image (created by adding noise) (b); final SSIM local quality map
computed using Eq. (5) – SSIMmean = 0.232 (c); luminance preservation map computed using Eq. (1) –
lmean = 0.998 (d); contrast preservation map computed using Eq. (2) – cmean = 0.443 (e); structure
preservation map computed using Eq. (3) – smean = 0.447; DMOS score of this image is 65.2 out of 100 (f ).
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should be used? And how much should we weight the percentile score by? In order
to determine the optimal value for p%, we performed an exhaustive optimization
from 2% to 100% in 2% increments. Rather than using an arbitrary monotonic function
of quality such as the smooth power-law function for example, we use the statistical
principle of heavily weighting the extreme values – in this case, lowest percentiles.
The lowest p% of the quality scores are (equally) weighted, the rest of the frame scores
are ignored, their weights effectively 0. Non-equal weights of rank-ordered values are
also possible, but this investigation was outside the scope of this paper.

Figure 5 shows the quality assessments for four examples in Figs. 1–4 using
individual SSIM components, and combined local SSIM values, Eq. (5), as a function
of p% of the lowest scores. Figures 5a and 5b show that sorted s values are closer to
the SSIM values, while sorted c values are closer to the SSIM in Figs. 5c and 5d.
The luminance is almost ideally preserved in all four examples. Significant difference
in quality assessment for the individual components in the whole range of the param-
eter p% can be observed.

Similar to the analysis performed in [20], the sorted SSIM local quality scores tend
to follow a curve shape that contains a steep or nearly steep section (left side of plots
on Fig. 5) corresponding to regions of severe quality degradation and a saturation sec-
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tion (right side of plots on Fig. 5) that arises from regions suffering from very low de-
grees of quality degradation.

4. Predicting visual quality with SSIM 
and its constituent components

In order to demonstrate the performance of SSIM, its components and their pairwise
combinations using the proposed pooling approach, we work on the LIVE image qual-
ity assessment database [21]. LIVE database contains 29 source images reflecting
the diversity of image contents, distortion types and subjective quality scores for each
distorted image (differential mean opinion scores, DMOS scores). 

Performance of different objective quality models, Eqs. (1)–(3) and (5), and their
combinations was evaluated with respect to three aspects of their ability to estimate
subjective assessment of image quality [22]:

– Prediction accuracy measured using: linear correlation coefficient (CC), mean
absolute error (MAE), and root-mean-square error (RMSE);

– Prediction monotonicity, measured using the Spearman rank-order correlation
coefficient (SROCC);

– Prediction consistency quantified using the outlier ratio (OR), defined as percent
of predictions outside ±2σ0.

Logistic functions are used in a fitting procedure to provide nonlinear mapping
between the objective/subjective scores as used in a benchmarking study in [22].
The nonlinearity chosen for regression for each of the models tested was a 4-parameter
logistic function.

T a b l e 1. Validation scores for quality assessment models on LIVE database – scale 1 (original
resolution).

Model
CC SROCC MAE RMSE OR

c 0.875 0.889 10.782 13.237 10.911
c (the lowest p%) 0.934 (2%) 0.944 (2%) 7.788 (2%) 9.743 (2%) 2.567 (2%)
l × c 0.878 0.892 10.664 13.076 10.783
l × c (the lowest p%) 0.935 (2%) 0.944 (2%) 7.748 (2%) 9.703 (2%) 2.567 (2%)
s 0.865 0.878 10.894 13.690 11.040
s (the lowest p%) 0.933 (2%) 0.938 (2%) 8.035 (2%) 9.780 (2%) 3.081 (6%)
l × s 0.868 0.881 10.797 13.546 10.141
l × s (the lowest p%) 0.933 (4%) 0.938 (2%) 8.066 (2%) 9.819 (4%) 2.952 (6%)
c × s 0.900 0.910 9.382 11.888 7.445
c × s (the lowest p%) 0.942 (2%) 0.949 (2%) 7.223 (2%) 9.199 (2%) 2.054 (4%)
SSIM (standard) 0.901 0.910 9.334 11.832 7.317
SSIM (the lowest p%) 0.941 (2%) 0.949 (2%) 7.248 (2%) 9.230 (2%) 2.054 (4–6%)
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All available LIVE database images were used (779 images) in the validation and
optimization of the similarity metrics. The metric performance was evaluated against
DMOS scores using five conventional performance metrics listed above. The results
at different image scales: the performance of standard structural similarity metrics as
the benchmark and the dependence of this performance on the percentage of relevant
p% lowest quality scores of the proposed method are given in Tables 1–5 (the best met-
ric is marked by bold). Taking the original and distorted image signals as the input,
we iteratively down-sample them by a factor of 2. We index the original image as

T a b l e 2. Validation scores for different quality assessment models on LIVE database – scale 2.

Model
CC SROCC MAE RMSE OR

c 0.856 0.873 11.471 14.131 13.736
c (the lowest p%) 0.908 (2%) 0.915 (2%) 9.170 (2%) 11.438 (2%) 4.365 (2%)
l × c 0.857 0.876 11.339 13.962 13.350
l × c (the lowest p%) 0.909 (2%) 0.916 (2%) 9.117 (2%) 11.381 (2%) 4.108 (2%)
s 0.897 0.907 9.695 12.068 7.574
s (the lowest p%) 0.922 (10%) 0.925 (12%) 8.736 (10%) 10.606 (10%) 3.723 (18%)
l × s 0.898 0.908 9.649 12.020 7.317
l × s (the lowest p%) 0.922 (10%) 0.925 (12%) 8.723 (10%) 10.585 (10%) 3.723 (12–22%)
c × s 0.912 0.920 8.938 11.233 5.520
c × s (the lowest p%) 0.923 (4%) 0.928 (12%) 8.232 (4%) 10.497 (4%) 4.108 (2%)
SSIM (standard) 0.912 0.920 8.907 11.203 5.263
SSIM (the lowest p%) 0.923 (6%) 0.928 (14%) 8.244 (4%) 10.493 (6%) 3.979 (2%)

T a b l e 3. Validation scores for different quality assessment models on LIVE database – scale 3.

Model
CC SROCC MAE RMSE OR

c 0.834 0.859 12.399 15.087 15.276
c (the lowest p%) 0.884 (2%) 0.896 (2%) 10.331 (2%) 12.787 (2%) 7.831 (2%)
l × c 0.838 0.863 12.271 14.901 14.891
l × c (the lowest p%) 0.886 (2%) 0.898 (2%) 10.262 (2%) 12.676 (2%) 7.574 (2%)
s 0.909 0.917 9.229 11.411 5.135
s (the lowest p%) 0.917 (6%) 0.922 (6%) 8.832 (4%) 10.870 (6%) 4.236 (16%)
l × s 0.909 0.917 9.210 11.386 5.006
l × s (the lowest p%) 0.918 (6%) 0.923 (6%) 8.811 (4%) 10.837 (6%) 4.108 (14–32%)
c × s 0.908 0.916 9.199 11.461 5.006
c × s (the lowest p%) 0.912 (2%) 0.917 (8%) 8.882 (2%) 11.184 (2%) 4.878 (2%)
SSIM (standard) 0.908 0.917 9.186 11.441 4.750
SSIM (the lowest p%) 0.913 (2%) 0.918 (8%) 8.876 (2%) 11.162 (2%) 4.750 (84–100%)
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scale 1 (typically 768×512 pixels), and the highest scale as scale 5, which is obtained
after four iterations. Values of p% yielding optimal metric performance are given in
brackets in Tables 1–5. The luminance term for CC, SROCC, MAE, RMSE and OR
is intentionally left out, because its narrow dynamic range (near perfect scores) shows
no real correlation with quality.

The results show that for most scale levels and metric formulations, smaller values
of p% produce best performing metrics. If we leave out the highest scale where only
a small amount of data remains – 48×32 pixels, the optimal p% value is close to 0 in-
dicating that a relatively small number of the worst regions provide optimal quality
assessment performance. This means that quality degradations are focused within

T a b l e 4. Validation scores for different quality assessment models on LIVE database – scale 4.

Model
CC SROCC MAE RMSE OR

c 0.804 0.839 13.164 16.261 18.100
c (the lowest p%) 0.843 (2%) 0.863 (2%) 12.011 (2%) 14.706 (2%) 12.452 (2%)
l × c 0.809 0.843 13.011 16.057 17.458
l × c (the lowest p%) 0.845 (2%) 0.866 (2%) 11.969 (2%) 14.617 (2%) 12.195 (2%)
s 0.902 0.912 9.492 11.769 5.391
s (the lowest p%) 0.909 (2%) 0.916 (2%) 9.069 (2%) 11.397 (2%) 5.135 (2%)
l × s 0.903 0.912 9.482 11.754 5.135
l × s (the lowest p%) 0.909 (2%) 0.916 (2%) 9.053 (2%) 11.371 (2%) 5.135 (2%, 100%)
c × s 0.895 0.907 9.777 12.153 6.547
c × s (the lowest p%) 0.901 (2%) 0.908 (2%) 9.421 (2%) 11.855 (2%) 6.547 (100%)
SSIM (standard) 0.896 0.907 9.768 12.139 6.547
SSIM (the lowest p%) 0.901 (2%) 0.908 (2%) 9.404 (2%) 11.825 (2%) 6.419 (88–92%)

T a b l e 5. Validation scores for different quality assessment models on LIVE database – scale 5.

Model
CC SROCC MAE RMSE OR

c 0.77 0.80 13.65 17.35 21.95
c (the lowest p%) 0.78 (2%) 0.81 (2%) 13.64 (52%) 17.00 (2%) 19.25 (2%)
l × c 0.78 0.81 13.39 17.02 21.57
l × c (the lowest p%) 0.78 (2%) 0.82 (2%) 13.39 (100%) 16.91 (2%) 19.38 (2%)
s 0.90 0.91 9.75 12.02 5.52
s (the lowest p%) 0.90 (100%) 0.91 (100%) 9.75 (100%) 12.02 (100%) 5.52 (100%)
l × s 0.90 0.91 9.75 12.02 5.52
l × s (the lowest p%) 0.90 (100%) 0.91 (100%) 9.75 (100%) 12.02 (100%) 5.52 (100%)
c × s 0.89 0.90 10.21 12.54 7.06
c × s (the lowest p%) 0.89 (100%) 0.90 (100%) 10.21 (100%) 12.54 (100%) 6.80 (76–78%)
SSIM (standard) 0.89 0.90 10.21 12.54 7.06
SSIM (the lowest p%) 0.89 (100%) 0.90 (100%) 10.21 (100%) 12.54 (100%) 6.93 (70–74%)
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the image and possibly present in only some regions. These regions would then deter-
mine the overall impression of quality and be vital for its objective assessment. This
simple modification exhibits 4% increase in linear correlation with subjective ratings
from the standard SSIM evaluation (see Table 1 and values for SSIM). 

Figure 6 shows the scale 1 SSIM optimization plot obtained for all 5 different met-
rics. It is clear from these plots that all the metrics are in agreement on the optimal
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function fit for the best and the worst cases.
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range of p% values. Scale 1 is selected because the best agreement of subjective and
objective scores is achieved (above 94%). 

Figure 7 shows the logistic function fit for the best and the worst (standard)
performing p% values at scale 1 for contrast, structure and SSIM comparisons. Scatter
plots of DMOS versus objective predictions are shown, with horizontal axes repre-
senting the objective quality score. The plots in Fig. 7 clearly show that the presented
p% lowest quality scores model results in a very well behaved metric response with
a linear relationship between objective and subjective scores across the entire range.
This is observed for both, individual contrast and structure components, and for
the overall SSIM values. Moreover, spreading of the standard SSIM scores is present
for low quality images (high DMOS values). Metrics with p% = 100% correspond to
the conventional SSIM approach and exhibit a considerably worse, less realistic re-
sponse to quality distortions requiring an additional logistic function to map the scores
to a reasonable response, clearly not the case with the proposed model.

5. Analysis of results

Graphical interpretations of results from Tables 1–5 are shown in Fig. 8. Since all
the metrics from Tables 1–5 show a high level of agreement, only CC and SROCC are
shown for the sake of brevity. Subscript “opt” indicates the results obtained for the best
(optimal) choice of the lowest p% scores.

Figure 8 clearly shows that the correlation of subjective and objective scores in-
creases when using the presented pooling approach (lowest p% scores) over all scales,
both for individual SSIM components and for the combined score. It also shows that
performance drops with the increase in scale, reduction in resolution, which is a logical
consequence of the removal of fine detail structures from the evaluation.

In terms of individual measurements, structure comparison achieves optimal sub-
jective agreement on scale 3 while contrast comparison is best performed at top reso-
lution. In general, performance of contrast decreases pretty linearly with a rise in scale.
This invites a conclusion that a separate scale contrast and structure evaluation, i.e.,
contrast at lower scales with structure information at higher scales, can produce more
appropriate assessment in general.

According to [6], optimal agreement between subjective and SSIM scores is at
scale 2, confirmed by our analysis (black lines in Fig. 8). Lower correlation coefficient
obtained here, 0.91 versus 0.96 in [6], is a result of different database releases used,
LIVE release 1 in [6] is a subset of the release 2 used here.

The finding from [19] that SSIM luminance comparison can be ignored (see
Table 2 and values for c × s and SSIM) is also confirmed here, with an extension that
it is valid for all five scales (see Tables 1–5 and values for c × s and SSIM).

Structure comparison is more significant than the comparison of contrast, accord-
ing to [19], where SSIM components were computed at half resolution, equivalent to
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scale 2 in our experiments. Therefore, contrast has an advantage in original resolution,
leading to conclusion that components’ importance depends on scale at which it is com-
pared. However, making a binary conclusion about the usefulness of contrast over
structure and vice versa probably does not do the SSIM approach justice. Both com-
parisons are important, which is illustrated in Table 6 using three additional publicly
available databases (CSIQ [23], IVC [24] and Toyama [25]) for contrast, structure and
final SSIM index comparisons (the best metric is marked by bold). These results show
that individual SSIM component – contrast c, in all cases produces better results than
the structure, s model. This leads to assumption that a novel fusion method of contrast
and structure information can perhaps improve performance further, for example using
a weighed additive model, with degradation dependent relative contribution of each
channel (different importance), as in [12].

Multiplicative integration of individual similarity models defined in Eq. (4) has
been a constant feature of all SSIM derivative metrics so far. Additive, single-scale,
SSIM integration model, introduced in [12], achieved optimal agreement with subjec-
tive quality scores when only a small fraction of the worst objective scores are
considered in estimation global quality. Furthermore, in [12] it is shown that within
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Fig. 8. Graphical illustrations of the results from Tables 1–5 obtained for different SSIM model
formulations and using optimal choice of the lowest p% scores.
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the context of structural similarity, preservation of contrast and the local structure in-
fluence subjective quality roughly evenly. Our comprehensive evaluation demonstrat-
ed that the multi-scale analysis and careful selection of operating scale can further
improve metric performance. So, an obvious extension of the research presented here
would be to extend the additive integration model to multiple-scales. 

To provide a global perspective on the performance of presented SSIM lowest
scores model, we compared it to conventional (PSNR), state-of-the-art metrics,
visual signal-to-noise ratio (VSNR) [26] and the multi-scale SSIM [6]. The results for
the LIVE database are given in Table 7 (the best metric is marked by bold).

SSIM model offers better assessment than PSNR and VSNR. The performance of
this model is comparable to MS-SSIM algorithm, such as the appropriate choice of
scale and use of the lowest p% scores could provide the suitable alternative to more
complex multi-scale SSIM index.

6. Conclusions
We presented a novel spatial pooling strategy and a multi-scale analysis of the well-
-known structural similarity index for objective image quality evaluation. We have
found that, in contrast with some previous studies, the perceptual importance pooling
strategy can significantly improve metric performance evaluated as the correlation with

T a b l e 6. Validation scores for different quality assessment models on CSIQ, IVC and Toyama
databases.

Model
CC SROCC MAE RMSE OR

D
at

ab
as

e

Contrast c 0.814 0.835 0.122 0.153 35.797
CSIQ Structure s 0.732 0.696 0.147 0.179 44.457

SSIM (standard) 0.815 0.837 0.116 0.152 33.487
Contrast c 0.797 0.796 0.573 0.736 18.378

IVC Structure s 0.747 0.723 0.620 0.810 22.162
SSIM (standard) 0.792 0.779 0.555 0.743 17.838
Contrast c 0.898 0.890 0.425 0.550 6.548

Toyama Structure s 0.760 0.747 0.643 0.813 16.071
SSIM (standard) 0.798 0.787 0.589 0.754 14.286

T a b l e 7. Validation scores for different quality assessment models on LIVE database.

Model
CC SROCC MAE RMSE OR

PSNR 0.870 0.876 10.535 13.467 10.270
VSNR 0.923 0.927 8.075 10.521 4.108
MS-SSIM 0.938 0.953 7.573 9.456 2.054
SSIM, scale 1, p = 2% 0.941 0.949 7.248 9.230 2.054
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subjective quality assessment. Individual comparison models defined within SSIM, in
particular contrast and local structure correlation, were shown to capable objective
quality metrics on their own, provided an optimal scale is used. Proposed pooling mod-
el was demonstrated to provide performance advantage with the full SSIM model on
an extensive LIVE dataset covering 779 degraded images and 5 different distortion
types compared to both SSIM with conventional pooling approach and state-of-the-art
objective quality metrics.

Although comprehensive evaluation demonstrated that the metric achieves high
levels of subjective agreement for a wide range of data, an obvious extension of
the research presented here would be to extend the evaluation model to multiple-scales
rather than just selecting one optimal scale as well as allowing different structural com-
parison methods, contrast and local structure in particular to be combined across scales
in a collaborative manner. Regional aggregation of local scores, in a two stage pooling
process rather than a single global model, also promises potential improvements in
metric performance.
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