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An improved deflectometry for wavefront measurement using a composite fringe is proposed to
reduce the projection fringes and improve the accuracy. The single composite fringe contains
four fringes in different directions. It goes through the tested objects and then is captured by
a CCD camera. Two high frequency orthogonal fringe patterns and two single period orthogonal
fringe patterns can be obtained from the composite fringe by fast Fourier transform. The unwrap-
ping of the wrapped phase of the high frequency fringe is accomplished by the corresponding single
period fringe using a heterodyne method. The wavefront is reconstructed by the integration of par-
tial derivatives. Using only one fringe, the proposed method is more applicable to dynamic wavefront
measurement. The experimental results demonstrate that the proposed method can retrieve the com-
plex wavefronts more accurately.

Keywords: wavefront measurement, fringe analysis, phase retrieval, fast Fourier transform (FFT), multi-
frequency heterodyne principle.

1. Introduction
Many methods for wavefront measurement have been presented so far. They measure
the phase directly or measure the wavefront slope. Measuring the phase directly has
a high accuracy, but it is not suitable for measuring objects with complex shapes. Mea-
suring the wavefront slope can solve the problem, but it requires coherent illumination
and a precise positioning of the optical setup.

A simple technique for measuring the wavefront slopes, consisting of a LCD mon-
itor and a CCD camera, has been developed in the last decade [1, 2]. The conventional
fringe algorithms are used to extract the deflections introduced by the tested object
modifying the reference fringe pattern. However, for the general wavefront, two partial
derivatives of the phase are needed to recover the desired wavefront. Two fringe pat-
terns are displayed and captured successively in orthogonal directions. It is not suitable
for dynamic measurements. FLORES et al. proposed to utilize a two-dimensional additive
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fringe to extend the one-dimensional deflectometry to two-dimensional case [3]. It has
an advantage of measuring smooth wavefront slopes by one-shot deflectometry. But
phase unwrapping must be carried out before wavefront information can be deduced
from the partial derivatives of the phase. Encountering an object with a complex shape,
phase unwrapping will become a difficult procedure. CANABAL and ALONSO [1] em-
ployed the TPU (temporal phase unwrapping) method [4–6], where the unwrapping is
carried out along the time axis. CASTILLO et al. [7] proposed the technique for wavefront
measurement of flame flux by combining the color fringe pattern and the temporal
phase unwrapping method [8]. These methods need the manipulation of various im-
ages, which do not meet the requirements of dynamic measurement. 

Inspired by GARCÍA-ISÁIS and OCHOA [9], we get four fringe patterns from a com-
posite fringe to solve this problem. Different from the method proposed by García-Isáis,
we develop a single composite fringe containing four fringes in different directions.
By calculating, we get two high frequency orthogonal fringe patterns and two single
period orthogonal fringe patterns. Making use of a heterodyne principle [10–13], we
get simultaneously two accurate wavefront slope components from the orthogonal
fringe patterns. After integration, we can obtain the results with a high accuracy.
Though our method resembles the one proposed in [9], it is extended to the two-direc-
tion from the original one-direction, which meets the requirements of phase unwrap-
ping in the wavefront measurement. 

The paper is organized as follows. Section 2 introduces the principle of the system.
Section 3 shows the procedure of the experiment. Section 4 presents the experimental
results. Section 5 discusses different results and summarizes this paper.

2. Fringe analysis
Suppose that we have a fringe pattern displayed in a LCD across the plane (x, y) with
fringes along the y-direction. The optical path lengths will change if we place a pure
phase object in front of the fringe pattern. The rays will be deflected by an angle
α = ∂W (x, y)/∂x, if the phase is inhomogeneous in the x-direction; W(x, y) is the optical
path length accumulated by a ray traveling through the phase object at the position (x, y).

Fig. 1. One-dimensional deflectometry.
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The fringes will appear shifted in the x-direction by a distance α d ≈ (∂W (x, y)/∂x)d
while the distance of the test object to the displayed pattern is d (as shown in Fig. 1).

Without loss of generality, we can suppose the undistorted fringe pattern is as fol-
lows:

(1)

where f  is the carrier frequency. The intensity distribution seen through the phase ob-
ject will be as follows:

(2)

However, to reconstruct the wavefront W (x, y), we need to obtain the partial de-
rivatives ∂W (x, y)/∂x and ∂W (x, y)/∂y. 

Using a computer, we generate a composite pattern to be displayed in a LCD given by

(3)

where f  is the carrier frequency, G is the constant that represents the amplitude value,
(x, y) are the normalized pixel coordinates, and I (x, y) is the image with its gray levels
in the range [0, G]. We can see that the pattern given by Eq. (3) comprises the sum of
four fringe patterns: one with vertical fringes, another with horizontal fringes, and
the last two with fringes almost at 45° and 135°. If the carrier terms are written as fol-
lows: 

(4)
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(6)

then the following relations hold,
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The cosines in formulas (7) and (8) are one period vertical and horizontal fringes.
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The intensity profile that we will obtain after the fringe in Eq. (3) goes through
the object will be given by

(9)

where a and b are the background and amplitude terms that depend on the LCD, re-
spectively, ϕ x, ϕ y, ϕ xy1 and ϕ xy2 are the phase functions related to the wavefront. 

As presented in [9], the Fourier transform of Eq. (9) can be expressed as

(10)

where (u, v) are the frequency coordinates. It consists of nine spectra centered on
frequencies (0, 0), ( f , 0), (0, f ), (1 – f, f ), ( f , f + 1), (–f, 0), (0 , –f ), ( f – 1, –f ) and
(–f, –f – 1).We only choose Dx, Dy, Dxy1 and Dxy2 to filter. We can separate these terms
accurately by a band-pass filter, and then transform them into the space domain by
the inverse Fourier transform. By computing the phase angle of these quantities, we
can obtain the phase maps of four fringe patterns as follows:

(11a)

(11b)

(11c)

(11d)

The wrapped differences of φ xy1, φ xy2, φ x and φ y are shown as:

(12)
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(13)

As presented in Eqs. (7) and (8), each of the wrapped differences consists of only
one period and is within the range 0 to 2π. To get φ1 and φ2, the unwrapped function of
the low frequency wrapped function  and  the following relations are satisfied:

(14)

(15)

Using Eq. (7) and Eq. (8) in Eq. (14) and Eq. (15), we obtain

(16)

(17)

where ϕ E1 = ϕ xy1 + ϕ x – ϕ y and ϕ E2 = ϕ xy2 + ϕ x – ϕ y represent the equivalent phases
of the phase differences. Then, what we have obtained are two single period fringe pat-
terns [9].

The multifrequency heterodyne principle can provide an accurate phase map be-
cause it can calculate the phase value of every pixel independently [13]. The un-
wrapped phase φ (x) is calculated by adding the phase function φ 1(x) and the order
function O1(x) multiplied by 2π

(18)

Since we have the phase maps of two single period fringe patterns and two related
high frequency fringe patterns, we can get two accurate orthogonal phase maps by
Eq. (18). They are the partial derivatives ∂W (x, y)/∂x and ∂W (x, y)/∂y.

Two accurate components of the ray deflection are obtained, then we can re-
construct the wavefront because it will be the solution of a Poisson equation with
the source term ∂2W/∂x2 + ∂2W/∂y2 resulting from the derivation of the vector
(∂W (x, y)/∂x, ∂W (x, y)/∂y).

The integration of the partial derivatives ∂W (x, y)/∂x and ∂W (x, y)/∂y is equivalent
to finding the function f (x, y) that is the solution of the Poisson equation ∇2f (x, y) =
= g(x, y) [3], while f (x, y) can be written as

(19) 
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3. Experiments
Now, we will describe some experiments and practical suggestions for the above pro-
cedure.

The two-dimensional composite fringe pattern described by Eq. (3) was displayed
in a LCD. We set f = 20 and G = 255. Our tested object was a convex lens with a di-
ameter of  7 cm as shown in Fig. 2. The lens was 5 cm distant from the LCD. The camera
used for acquiring the images was at a distance of the order of 100 cm from the LCD.

Figure 3 shows the frequency spectrum of the acquired pattern. The nine bright spots
are clearly visible, therefore it is easy to locate their position. Multiplying the FFT re-
sult with a Hanning filter of radius 10, centered on the frequency coordinates (30, 0),
(0, 23), (–30, 23) and (30, 23) shown in the circles, and calculating the four inverse
FFTs, we have obtained four wrapped phases given by Eq. (7) and shown in Fig. 4. 

Using Eqs. (16) and (17), we obtain the phase maps of two fringe patterns without
unwrapping as follows:

cx(x, y) = 2πx, cy(x, y) = 2πy (21)

Taking advantage of the multifrequency heterodyne principle, we can obtain
the accurate phase maps of two orthogonal fringe patterns with the phase maps of two
single period fringe patterns and two related high frequency fringe patterns. 

Fig. 2. The tested convex lens.
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In order to avoid boundary effects, we choose a region in the middle as shown
in Fig. 2. The unwrapped maps of ∂W (x, y)/∂x and ∂W (x, y)/∂y are shown in Fig. 5.

As presented in Section 2, with the value of the vector (∂W (x, y)/∂x, ∂W (x, y)/∂y),
obtained above, we can calculate ∇2W (x, y). Basing on the result of the numerical inte-
gration of the Poisson equation with ∇2W (x, y), we reconstructed the wavefront W (x, y).

4. Results
We reconstruct the wavefronts by Flores algorithm, García-Isáis algorithm and
the proposed algorithm separately. As shown in Figs. 6a–6c, the central areas corre-
sponding to the convex lens are smooth and similar. By comparison of the results, we
can see that all the methods can retrieve the wavefronts of the convex lens well.

a b

c d

Fig. 4. Wrapped phase components obtained from the Fourier spectrum. Horizontal (a), vertical (b), slope
upper right (c), and slope bottom right (d).

Fig. 5. The unwrapped maps of ∂W (x, y)/∂x (a), and ∂W (x, y)/∂y (b).

a b
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The contrasts are not obvious when the tested object has a simple shape. The compu-
tational times are 0.7216, 0.7286 and 0.7360 s. There is little difference among them. 

The 3D display of the wavefronts recovered by the proposed algorithm is shown
in Fig. 6d. It conforms to the shape of the tested lens. This confirms the practicability
of the proposed algorithm. 

Lacking the theoretical value, we simulate the above experiment by MATLAB. We
choose an area in the center of the convex lens to measure. After being normalized,
the mean square errors obtained by Flores algorithm, García-Isáis algorithm and
the proposed algorithm are 0.3153, 0.3063 and 0.3005. The computational times are
0.2843, 0.2872, and 0.2896 s. At the longest computational time, the proposed algo-
rithm has the highest accuracy. The comparisons of them are not obvious. To contrast
the three algorithms distinctly, we do another experiment on a complex bottle as shown
in Fig. 7. 

Since the pattern in the middle of the bottle is a semicircle and the matter is isotropic,
the wavefronts should have the same structure in the middle. The differences in the struc-
tures of the wavefronts obtained by Flores algorithm, García-Isáis algorithm and
the proposed algorithm are shown in Figs. 8a–8c, respectively. The contrasts among
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Fig. 6. Wavefronts obtained by Flores algorithm (a), by García-Isáis algorithm (b), and by the proposed
algorithm (c). 3D display of the wavefronts recovered by the proposed algorithm (d).
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the figures are obvious. The contour lines in Fig. 8a are nearly rectangles which are
very different from the bottle. The contour lines in Fig. 8b are rounder. García-Isáis
algorithm is more accurate. The contour lines in Fig. 8c are the roundest. The proposed
algorithm is the most accurate. The 3D display of the wavefronts recovered by the pro-
posed algorithm is shown in Fig. 8d. It also conforms to the structure of the bottle.
The computational times are 0.7241, 0.7312 and 0.7364 s. The complexity of the tested

Fig. 7. The tested complex bottle.
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Fig. 8. Phase change obtained by Flores algorithm (a), by García-Isáis algorithm (b), by the proposed
algorithm (c). 3D display of the wavefronts recovered by the proposed algorithm (d).

4000

4000

4



460 TONGCHUAN LIU et al.

object influences the computational times little, however, it influences the accuracy
obviously. The experiment demonstrates that the proposed method can retrieve the com-
plex wavefronts more accurately. 

The proposed algorithm unwraps the wrapped phases ∂W (x, y)/∂x and ∂W (x, y)/∂y
by the multifrequency heterodyne method. García-Isáis algorithm unwraps the wrapped
phases ∂W (x, y)/∂x in the same way, however, it unwraps the wrapped phases
∂W (x, y)/∂y by the general spatial method. Since ∂W (x, y)/∂y has errors, the recon-
structed wavefronts ∇2W (x, y) have a low accuracy. The accuracy of Flores algorithm
is much lower. It is because the algorithm only separates two orthogonal fringes from
the composite fringe by FFT, and the unwrapping procedure of a wrapped phase is very
simple. When the object has a complex shape, the accuracy reduces most.

The more complex the algorithm is, the more computational time it uses. The dif-
ferences in computational times are small. Taking advantage of multi-threading and
parallel processing, GPU (graphic processing unit) algorithm can speed up the processes
of the multifrequency heterodyne method [14]. Then the proposed algorithm will use
less computational time and apply to the dynamic wavefront measurement better.

Using only one fringe, the proposed method makes it possible to measure dynamic
wavefronts. In general, it can retrieve the wavefronts quickly and accurately. Espe-
cially, when the tested object has a complex shape, the proposed method can improve
the accuracy greatly.

5. Conclusions

By a composite fringe containing four fringe patterns, we get the accurate phase maps
of two accurate orthogonal fringe patterns. Basing on the phase maps, we obtain
the accurate wavefront patterns. The proposed algorithm is more applicable to dynamic
wavefront measurement. It can retrieve the complex wavefronts more accurately.
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