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Abstract: A non-financial enterprise with receivables or liabilities denominated in a foreign currency 
is exposed to currency risk. Wanting to calculate a financial reserve in order to secure its receivables 
or liabilities, an enterprise can introduce the concept of the value at risk. To determine value at risk, an 
enterprise has to know the probability distribution of the future value of the receivable or the liability 
for a specific moment in future. Using a geometric Brownian motion to reflect exchange rate changes is 
among the possible solutions. The aim of the paper is to indicate that using the Monte Carlo simulation 
for forecasting the currency risk of an enterprise is a clear, easy-to-implement and flexible in terms of 
the assumptions approach. The flexibility of the Monte Carlo approach relies on the possibility to take 
up the assumption that the currency position changes caused by currency fluctuations have an other 
than normal probability distribution.
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1.	Introduction

A non-financial enterprise with receivables or liabilities denominated in a foreign 
currency is exposed to currency risk. Wanting to calculate a  financial reserve in 
order to secure its receivables or liabilities, an enterprise can introduce the concept 
of value at risk. To determine value at risk, an enterprise has to know the probability 
distribution of the future value of the receivable or the liability for a specific moment 
in future. Using a geometric Brownian motion to reflect exchange rate changes is 
among the possible solutions. The traditional approach (that is most often presented) 
to geometric Brownian motion assumes normal changes, whereas in cases of 
currencies these changes can be other than normal.

The aim of the paper is to indicate that using the Monte Carlo simulation for 
forecasting the currency risk of an enterprise is a  clear, easy-to-implement and 
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flexible in terms of the assumptions approach. The flexibility of the Monte Carlo 
approach relies on the possibility to take up the assumption that currency position 
changes caused by currency fluctuations have an other than normal probability 
distribution. The intended contribution of the paper is to promote the Monte Carlo 
simulation as an easy to understand risk forecasting technique. This could be an 
argument for smaller economic entities to introduce simulation for casual use. A case 
study of a  currency position being a  receivable of a  hypothetical enterprise with 
a year payment horizon is presented. The case study compares the absolute value at 
risk of ten different currencies in which the receivable could be denominated. 

2.	Forecasting market risk using a geometric Brownian motion

Forecasting a financial risk using the historical simulation (HS) is a rather limited 
solution. The most important problem is the frequency of the available data. The 
data with daily, weekly or monthly frequency gives respectively a  daily, weekly 
or monthly forecasting horizon. Forecasting a quarter or half a year ahead or any 
desired horizon with the data of limited frequency to hand can be conducted by using 
a geometric Brownian motion (GBM). This solution is based on the assumption that 
the examined financial instrument logarithmic changes are normally distributed (1). 
An individual who knows the mean and the standard deviation of logarithmic changes 
(2) of a financial asset (e.g. a receivable or a liability in a foreign currency) is able 
to calculate the expected value (3) and standard deviation (4) of the financial asset 
(or a capital allocated in the financial asset) for any given horizon (time interval) 
[Brigo et al. 2007, pp. 5-6, 9; Vose 2008, pp. 329-330]. The traditional approach to 
GBM assumes that financial asset changes are normally distributed, whereas the 
future value of the financial asset has a log-normal distribution [Glasserman 2004, 
pp. 94-95].

𝑃𝑃𝑡𝑡+𝑇𝑇 = 𝑃𝑃𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 �𝐺𝐺𝑁𝑁 �𝑢𝑢,�𝜇𝜇 −
𝜎𝜎2

2 �𝑇𝑇,𝜎𝜎√𝑇𝑇�� , (1)

where: GN () – the inverse function of the cumulative distribution function for the 
normal probability distribution, μ – drift, σ – volatility, T – time interval  
(1 when “step by step” – day by day, week by week etc.), Pt – financial 
asset value (or capital allocated in the financial asset) in the current period,  
Pt+T – financial asset value (or capital allocated in the financial asset) after 
time interval T, u – a random number from the uniform distribution (0,1).

𝑚𝑚 = �𝜇𝜇 −
𝜎𝜎2

2 �𝑇𝑇, 𝑣𝑣 = 𝜎𝜎2𝑇𝑇 , (2)
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where:	m – average value of the empirical probability distribution of the logarithmic 
changes (logarithmic rates of return) of the financial asset (expected rate of 
return), v – variance of the empirical probability distribution of the logarithmic 
changes (logarithmic rates of return) of the financial asset (expected rate of 
return).

𝐸𝐸(𝑃𝑃𝑡𝑡+𝑇𝑇) = 𝑃𝑃𝑡𝑡exp(𝜇𝜇𝜇𝜇) , (3)

𝑆𝑆(𝑃𝑃𝑡𝑡+𝑇𝑇) = �exp(2𝜇𝜇𝜇𝜇)𝑃𝑃𝑡𝑡2[exp(𝜎𝜎2𝜇𝜇)− 1] , (4)

where:	 E(Pt+T) – the expected value of the financial asset (or capital allocated in the 
financial asset) after interval T, S(Pt+T) – the standard deviation of the value of 
the financial asset (or capital allocated in the financial asset) after interval T.

The value at risk is the “worst loss over a target horizon that will not be exceeded 
with a given level of confidence” [Jorion 2007, p. 17]. In terms of calculating a financial 
reserve for a  receivable or a  liability in a  foreign currency, the absolute VaR is an 
amount that covers the potential negative changes with a given probability level. 

In the traditional approach, in order to calculate VaR for the financial asset (or 
capital allocated in the financial asset), the inverse function of the logarithmic normal 
distribution has to be used (7) to obtain the desired quantile. The inverse function 
needs arguments (5, 6). They can be obtained on the basis of the expected value (3) 
and standard deviation (4) of the financial asset in a given horizon T [Vose 2008,  
p. 658]. Knowing the quantile and the present value or the expected value (3) of the 
financial asset, an individual may calculate respectively absolute (8) and relative (9) 
VaR [Jorion 2007, p. 108]. 

𝐸𝐸𝐿𝐿𝐿𝐿 = ln �
𝐸𝐸(𝑃𝑃𝑡𝑡+𝑇𝑇)2

�𝑆𝑆(𝑃𝑃𝑡𝑡+𝑇𝑇)2 + 𝐸𝐸(𝑃𝑃𝑡𝑡+𝑇𝑇)2
� , (5)

𝑆𝑆𝐿𝐿𝐿𝐿 = �ln ��
𝑆𝑆(𝑃𝑃𝑡𝑡+𝑇𝑇)
𝐸𝐸(𝑃𝑃𝑡𝑡+𝑇𝑇)�

2

+ 1� , (6)

𝑃𝑃𝑡𝑡+𝑇𝑇𝛼𝛼 = 𝐺𝐺𝐿𝐿𝐿𝐿(𝛼𝛼,𝐸𝐸𝐿𝐿𝐿𝐿 ,𝑆𝑆𝐿𝐿𝐿𝐿) , (7)

where:	ELN – the expected value of the natural logarithms of financial asset possible 
values (or capital allocated in the financial asset) after interval T, SLN – the 
standard deviation of the natural logarithms of financial asset possible values 
(or capital allocated in the financial asset) after interval T, Pt+Tα – the quantile 
value of the financial asset (or capital allocated in the financial asset) after 
interval T with a given significance level (with a given probability), GLN () – 
the inverse function of cumulative distribution function for the logarithmic 
normal probability distribution, α – significance level (given probability).
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VaRA = 𝑃𝑃0 − 𝑃𝑃𝑡𝑡+𝑇𝑇𝛼𝛼 , (8)

VaRR = 𝐸𝐸(𝑃𝑃𝑡𝑡+𝑇𝑇) − 𝑃𝑃𝑡𝑡+𝑇𝑇𝛼𝛼 , (9)

where: VaRA – absolute value at risk of the financial asset (or capital allocated in the 
financial asset) after interval T, VaRR – relative value at risk of the financial 
asset (or capital allocated in the financial asset) after interval T.

Taking into account the aim of the paper it has to be stated that the Monte Carlo 
approach to GBM can be easily conducted “step by step” with equal or unequal time 
increments [Vose 2008, pp. 330-331]. Day by day for daily empirical data, week 
by week for weekly empirical data and so on. In the Monte Carlo approach it is 
also very easy to introduce other than normal probability distribution (10). “Valuing 
financial assets when the world is not as normal as assumed by many financial 
models requires a method flexible enough to function with different distributions 
which, at the same time, can incorporate discontinuities such as those that arise from 
jump processes. The Monte Carlo method fulfills all these requirements, in addition 
to being accurate and efficient, which makes this numerical method the most suitable 
one in those cases that do not conform to normality” [Ochoa 2004, p. 1].

𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒[𝐺𝐺𝐵𝐵𝐵𝐵(𝑢𝑢,𝑃𝑃𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃𝑃𝑃2, … ,𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚)] , (10)

where:	GBF () – the inverse function of the cumulative distribution function for the 
best fitting (to empirical) probability distribution, Par1, Par2, …, Parm – 
the parameters of the inverse function, Pt – financial asset value (or capital 
allocated in the financial asset) in the current period, Pt+1 – financial asset 
value (or capital allocated in the financial asset) in the next period, u  – 
a random number from the uniform distribution (0,1).

The simulation is very easy to perform on a  spreadsheet. The first step is to 
possess empirical data on a financial asset. In cases of a receivable denominated in 
a foreign currency the historical currency quotations have to be gained. The next step 
is to choose the frequency for the step-by-step approach. For example, if the weekly 
frequency is chosen then the empirical data should be filtered into weekly data. After 
that the empirical quotations should be recalculated into logarithmic changes and their 
expected value and standard deviation should be obtained (2). Then the forecasting 
horizon should be chosen and the initial value of the financial asset (or capital allocated 
in the financial asset) should be set. Finally, the value of a financial asset should be 
calculated step-by-step (week-by-week when the weekly frequency is chosen). The 
process should be repeated many times to gain as many potential scenarios of the value 
of the financial asset in a given horizon as possible. The more scenarios, the more 
precise the accuracy of the simulation approach is (see: sample spreadsheet solution 
for the traditional and simulation approach to GBM in Figure 1).

The Monte Carlo approach is much easier in terms of the clear presentation of 
the problem as well as being an incomparably easier way to perform calculations of 
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Fig. 1. An example model of the GBM – a sample spreadsheet solution for traditional and simulation 
approach for a five week forecast on the basis of 521 historical weeks with normal distribution 
assumption, 100,000 iterations

Source: own elaboration.
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VaR using spreadsheet functions (see: Figure 1). Thus, the Monte Carlo approach 
should be promoted as a  tool suitable for individuals not having strong statistical 
experience whereas this experience is required for the traditional approach.

The second important problem is the type of the theoretical probability 
distribution. The popular approach to GBM assumes a  normal probability 
distribution. One of the most significant disadvantages is the poor reliability in 
covering extreme losses [Wilmott 2006, pp. 297-299]. The logistic and hyper secant 
distribution are indicated, e.g. to “well fit over the entire domain of the empirical 
distribution, without the needing to trade off between tail and central range of the 
series at hand” [Bagnato et al. 2015, p. 1232]. The Monte Carlo approach enables 
the easy introduction of any other type of distribution. Taking into account the aim 
of the paper it has to be emphasized that this possibility is an important advantage of 
the Monte Carlo approach which proves its flexibility. The most important thing is to 
fit the distribution to data. This can be done using various goodness-of-fit statistics 
(Chi-Square, Kolmogorov-Smirnov, Anderson-Darling) or information criteria 
(Schwarz, Akaike, Hannan-Quinn) [Vose 2008, pp. 284-295].

No matter the method or the approach, the calculated VaR is a  hypothetical, 
maximum, negative change in an asset with a  given confidence level. Making 
a financial reserve equal to VaR means covering the asset potential loss with a given 
confidence level. The difference between absolute and relative VaR is that relative 
VaR covers the difference between the expected value and the present value.

3.	Case study

A hypothetical enterprise was assumed to have a  receivable in one out of the ten 
foreign currencies, of which the present value recalculated in a domestic currency 
was 10,000.00 PLN on 31st December 2016. The receivable is a long-term asset that 
is expected to be converted into a domestic currency after 52 weeks. The enterprise 
is going to secure the receivable by making a  reserve. The reserve has to cover 
potential losses with 99% confidence level. The absolute Value at Risk (VaRA) was 
calculated for every considered foreign currency. The traditional approach and the 
Monte Carlo approach were used. Alongside the normal distribution, a best fitting 
distribution was used in the Monte Carlo approach.

On the basis of 521 weekly logarithmic changes of every currency (01/05/2007-
-12/30/2016 – last ten years) an expected logarithmic change with accompanying 
standard deviation was calculated. Subsequently, the forecasted probability 
distribution of the receivable was derived using the traditional, non-simulation 
approach to GBM. The highest expected value of the hypothetical receivable was 
noted for the CHF (10,653.32 PLN), whereas the lowest – for the HUF (9,192.74 PLN). 
The expected value higher than the present value was noted for seven out of the ten 
considered currencies (Table 1).
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Table 1. The VaRA using the traditional approach with a normal probability distribution assumption

Currency m Σ μ E(Pt + T) S(Pt + T) ELN SLN Pt + Tα VaRA

CHFPLN 0.102% 1.987% 0.122% 10,653.32 1,534.56 9.26 0.14 7,555.10 2,444.90

CZKPLN 0.029% 1.206% 0.036% 10,188.38 887.76 9.23 0.09 8,290.77 1,709.23

DKKPLN 0.024% 1.359% 0.033% 10,175.53 999.96 9.22 0.10 8,061.64 1,938.36

EURPLN 0.024% 1.340% 0.033% 10,173.66 985.67 9.22 0.10 8,087.09 1,912.91

GBPPLN –0.021% 1.725% –0.006% 9,966.42 1,244.87 9.20 0.12 7,404.07 2,595.93

HRKPLN 0.021% 1.306% 0.030% 10,155.41 958.77 9.22 0.09 8,120.78 1,879.22

HUFPLN –0.013% 1.165% –0.006% 9,966.56 838.86 9.20 0.08 8,168.21 1,831.79

NOKPLN 0.006% 1.471% 0.017% 10,089.10 1,073.51 9.21 0.11 7,838.07 2,161.93

UAHPLN –0.257% 4.358% –0.162% 9,192.74 2,961.92 9.08 0.31 4,211.86 5,788.14

USDPLN 0.065% 2.156% 0.088% 10,467.52 1,637.51 9.24 0.16 7,202.71 2,797.29

P0 = 10,000.00, T = 52 weeks, n = 521 weeks (01/05/2007-12/30/2016, stooq.pl), α = 0.01

Source: own elaboration.

Taking into account that currencies change along with the traditional approach 
to GBM, a 1% quantile was calculated for a 52-week horizon (Table 1). The highest 
quantile was noted for the CZK (8,290.77 PLN), whereas the lowest for the UAH 
(4,211.86 PLN). In this way it was determined that the future value of the receivable 
in the CZK would exceed 8,290.77 PLN with a 99% confidence level. In the case of 
the UAH, the future value of the receivable will exceed 4,211.86 PLN with the same 
confidence level. The lower the quantile with a given confidence level, the higher the 
currency risk affecting the enterprise’s receivable.

As a  consequence, the VaRA for the receivable denominated in the CZK 
is 1,709.23 PLN and 5,788.14 PLN in the case of the UAH. This means that the 
receivable with a present value of 10,000.00 PLN will not lose its value by respectively 
more than 1,709.23 PLN and 5,788.14 PLN (Table 1). Making a reserve equal to the  
VaRA means securing the receivable with a 99% confidence level. In other words, 
there is a 1% chance that the receivable will decrease by more than the value of the 
VaRA. One should notice that the same level of security is to be achieved for the 
receivable denominated in the CZK with a 3.39 times lower amount.

The calculations were conducted again using the Monte Carlo approach. The 
first variant under consideration was the simulation with the normal probability 
distribution assumption1, whereas the second variant was the simulation with the 
assumption that the currency position changes have the probability distribution 
that fits best to empirical data.2 There was no normal distribution indicated in any 

1 The outcome provided by the Monte Carlo simulation with a normal distribution assumption 
in terms of forecasted currency position changes is equal to the outcome obtained with the traditional 
approach. It has to be mentioned that individuals with lower statistical experience could perceive the 
simulation approach as being much clearer.

2 The theoretical distributions were fitted using the Palisade @RISK 7.5.1. All the available distri-
butions were used. The default information criterion AIC was chosen. 
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currency taken into account. In the case of five currencies it was determined that 
the best fitting theoretical probability distribution was hyperbolic-secant distribution 
(CZK, GBP, HRK, HUF, NOK). The next four currencies had the Laplace distribution 
(CHF, DKK, EUR, UAH). There was also one currency with logarithmic-logistic 
distribution (USD). The expected value and the VaRA were obtained using 100,000 
iterations, the random values were generated using the Latin HyperCube technique 
and the Mersenne Twister random number generator.3

Table 2. The VaRA – the Monte Carlo simulation outcome with normal and best fitting probability 
distribution assumption

Currency
E(Pt + T) VaRA Normal vs Best Fit

Best fitting  
probability distributionNormal 

MC
BestFit 

MC
Normal 

MC
BestFit 

MC
E(Pt + T) VaRA

CHFPLN 10,652.59 9,641.84 2,450.63 2,886.30 10.5% –15.1%
RiskLaplace 
(–0.00085897,0.017752)

CZKPLN 10,188.65 9,836.02 1,707.39 1,924.49 3.6% –11.3%
RiskHypSecant 
(–0.00038386,0.011505)

DKKPLN 10,175.19 9,951.68 1,929.05 2,051.88 2.2% –6.0%
RiskLaplace 
(–0.00017916,0.013098)

EURPLN 10,173.67 9,755.34 1,914.83 2,219.20 4.3% –13.7%
RiskLaplace 
(–0.00056193,0.013083)

GBPPLN 9,966.92 9,743.54 2,588.56 2,795.52 2.3% –7.4%
RiskHypSecant 
(–0.00065269,0.017404)

HRKPLN 10,155.30 10,022.58 1,866.71 1,873.72 1.3% –0.4%
RiskHypSecant 
(–0.000032023,0.012279)

HUFPLN 9,966.70 9,898.93 1,830.51 1,802.52 0.7% 1.6%
RiskHypSecant 
(–0.00025571,0.011016)

NOKPLN 10,089.22 9,841.96 2,163.29 2,305.09 2.5% –6.2%
RiskHypSecant 
(–0.00040881,0.014293)

UAHPLN 9,194.68 9,411.61 5,788.54 4,780.80 –2.3% 21.1%
RiskLaplace 
(–0.0017138,0.033188)

USDPLN 10,467.02 10,378.46 2,814.71 2,699.03 0.9% 4.3%
RiskLoglogistic 
(–0.1897,0.18908,16.706)

P0 = 10,000.00, T = 52 weeks, n = 521 weeks (01/05/2007-12/30/2016, stooq.pl), α = 0.01

Source: own elaboration.

The hierarchy of the considered currencies due to the forecasted VaRA was 
changed by the assumption of the best fitting probability distribution. It has to be 
emphasized that using the normal distribution instead of the best fitting one provided 
a  21.1% higher VaRA in the case of UAH (the VaRA equal 5,788.54 PLN for the 

3 The iterations were conducted using Palisade @RISK 7.5.1 as in the case of the distribution 
fitting.
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normal and 4,780.80 PLN for the best fitting). In cases of the CHF, CZK and EUR 
currencies applying the normal distribution resulted with a  significantly different 
VaRA. The VaRA derived was respectively –15,1%, –11,3% and –13,7% lower. It 
has to be noted that the expected value calculated with the assumption of the normal 
probability distribution resulted to be lower (–2.3%) in the horizon of 52 weeks for 
UAH. A different situation was observed with CHF, CZK and EUR which indicated 
the expected value respectively of 10.5%, 3.6% and 4.3%. What is interesting is that 
the outcomes were very similar for the HRK and HUF currencies.

Fig. 2. The forecasted probability distribution of the receivable denominated in CHF.  
The VaRA higher with the best fitting probability distribution of receivables changes over time

Source: own elaboration.

The graphical analysis of the probability distribution of the receivable future value 
for UAH and CHF enhances the ability of an individual to perceive the associated 
market risk. Using the normal probability distribution for UAH shows higher risk 
(Figure 3), whereas using it in the case of CHF shows a lower risk in comparison to 
the best fitting probability distribution (Figure 2). Using the best fitting distributions 
may lead to significantly different outcomes in terms of risk. Backtesting the VaR 
model with such a long horizon (a year) using empirical data is limited (especially 
in young markets). An individual may check the distribution using weekly or daily 
frequency (see more on the VaR backtesting in: [Hull 2012, pp. 197-200; Jorion 
2007, pp. 139-157; Best 2000, p. 105]).

The basis of the calculations is empirical data. Regardless of the finally chosen 
approach (traditional, simulation with normal changes or simulation with best fitting 
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Fig. 3. The forecasted probability distribution of the receivable denominated in UAH.  
The VaRA lower with the best fitting probability distribution of receivables changes over time

Source: own elaboration.

changes) the final outcomes strongly depend on the chosen historical period. In the 
considered case changing the assumption concerning the period of empirical data from 
last ten years to last five years changes the calculated VaRs significantly (Table 3).

In the shorter analysed period assuming the normal changes of the receivable – 
nine out of the ten currencies taken into account (all but UAH) indicated the lower 
VaRA. It should be emphasized that in the case of five currencies the difference 
exceeded –25% (DKK, EUR, HRK, HUF and USD). Only for UAH, was VaRA more 
than 15% higher (in comparison to the outcome derived using the assumption of 
the last ten years). Certainly, the UAH was affected by the political crisis. Thus, 
shortening the empirical data caused higher VaR. The other currencies were probably 
affected by the financial crisis and its post-period (2007-2009). Excluding this period 
caused lower calculated VaRs (Table 3).

It has to be stated that the character of the empirical data period should be 
confronted with the expectations in terms of the forecasted period. The expected 
turbulent circumstances on the financial market could result with considering the 
significantly volatile empirical period as the basis of forecasting currency risk, 
which should result in avoiding underestimated VaRs. Simultaneously, excluding the 
turbulent period could be the solution for forecasting a steady future period in order 
to avoid overestimating the risk. The ultimate consequence of overestimating the risk 
might be higher than the required financial reserves unnecessarily affecting liquidity.
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Table 3. The VaRA using the traditional approach with a normal probability distribution assumption

Currency m σ μ E(Pt + T) S(Pt + T) ELN SLN Pt + Tα VaRA Difference

CHFPLN 0.043% 1.610% 0.056% 10,296.83 1,199.81 9.23 0.12 7,806.34 2,193.66 –10.3%

CZKPLN –0.028% 0.908% –0.024% 9,874.98 647.26 9.20 0.07 8,461.64 1,538.36 –10.0%

DKKPLN –0.001% 0.891% 0.003% 10,015.47 644.52 9.21 0.06 8,606.46 1,393.54 –28.1%

EURPLN –0.005% 0.875% –0.001% 9,993.14 631.14 9.21 0.06 8,611.75 1,388.25 –27.4%

GBPPLN –0.014% 1.415% –0.004% 9,981.65 1,021.42 9.20 0.10 7,831.12 2,168.88 –16.5%

HRKPLN –0.001% 0.887% 0.003% 10,017.77 641.67 9.21 0.06 8,614.56 1,385.44 –26.3%

HUFPLN 0.001% 0.874% 0.005% 10,026.71 632.70 9.21 0.06 8,641.84 1,358.16 –25.9%

NOKPLN –0.066% 1.202% –0.059% 9,697.00 842.21 9.18 0.09 7,896.26 2,103.74 –2.7%

UAHPLN –0.389% 5.394% –0.243% 8,811.01 3,560.86 9.01 0.39 3,305.28 6,694.72 15.7%

USDPLN 0.075% 1.610% 0.088% 10,466.23 1,219.12 9.25 0.12 7,935.55 2,064.45 –26.2%

P0 = 10,000.00, T = 52 weeks, n = 261 weeks (01/06/2012-12/30/2016, stooq.pl), α = 0.01

Source: own elaboration.

Using the simulation with the best fitting probability distribution delivered 
divergent outcomes again (Table 4). The probability distribution fitting did not result 
in normal distribution for any of the considered currencies. The most frequent best 
fitting probability distribution appeared to be logistic distribution (five currencies – 
EUR, GBP, HUF, NOK, USD). The second most frequent probability distribution 
was hyper secant distribution (three currencies – CZK, DKK, HRK). For one of 
the considered currencies it occurred that logarithmic logistic distribution fitted best 
(CHF). The case of UAH indicated the Cauchy probability distribution as the best 
fitting one which, in terms of the simulation, delivered unreal extreme future values 
(0 or +∞). Consequently, the Laplace distribution was assumed for UAH. It has to be 
stated that this distribution was marked as the best fitting one in the longer ten-year 
analysed historical period. Simultaneously, the probability distribution was repeated 
twice for CZK and HRK (Table 4).

The simulation results showed clearly that using the normal distribution in the 
case of CHF and UAH had brought higher VaRA (respectively 36.1% and 46.6% 
higher). The calculations indicated lower VaRA for most of the other considered 
currencies. Only in the case of HRK and NOK the simulation result was very close. 
Again, the highest VaRA in the case of the best fitting probability distribution was 
indicated for UAH (4,556.05 PLN), whereas the lowest – for HRK (1,377.85 PLN) 
and HUF (1,455.19 PLN).

Both the empirical period used for the distribution fitting as well as using the 
best fitting distribution instead of the normal distribution have significant meaning. 
The normal distribution was not the best fitting one in the case of any considered 
currency for both of the empirical periods that had been taken into account. The 
best fitting probability distribution differed for the most currencies when it came to 
different empirical periods.
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Table 4. The VaRA – the Monte Carlo simulation outcome with the normal and best fitting probability 
distribution assumption

Currency
E(Pt + T) VaRA

Normal vs 
BestFit Best fitting  

probability distributionNormal 
MC

BestFit 
MC

Normal 
MC

BestFit 
MC E(Pt + T) VaRA

CHFPLN 10,297.01 10,042.93 2,196.21 1,613.36 2.5% 36.1% RiskLoglogistic 
(–0.090425,0.08981,15.246)

CZKPLN 9,874.89 9,719.56 1,533.61 1,658.42 1.6% –7.5% RiskHypSecant 
(–0.00058726,0.0089758)

DKKPLN 10,015.56 9,897.09 1,391.32 1,510.02 1.2% –7.9% RiskHypSecant 
(–0.00023928,0.0089909)

EURPLN 9,993.27 9,901.63 1,385.97 1,459.47 0.9% –5.0% RiskLogistic 
(–0.00022792,0.0047939)

GBPPLN 9,981.78 9,894.21 2,175.24 2,262.66 0.9% –3.9% RiskLogistic 
(–0.00030715,0.0078985)

HRKPLN 10,017.59 10,061.26 1,386.22 1,377.85 –0.4% 0.6% RiskHypSecant 
(0.000076586,0.0090284)

HUFPLN 10,026.68 9,940.70 1,353.84 1,455.19 0.9% –7.0% RiskLogistic 
(–0.00015335,0.0048714)

NOKPLN 9,697.06 9,700.89 2,115.66 2,089.76 0.0% 1.2% RiskLogistic 
(–0.00065601,0.00663)

UAHPLN 8,811.76 10,344.99 6,681.08 4,556.05 –14.8% 46.6% RiskLaplace 
(0,0.0361)

USDPLN 10,466.08 10,397.73 2,066.14 2,154.78 0.7% –4.1% RiskLogistic 
(0.00061709,0.0089954)

P0 = 10,000.00, T = 52 weeks, n = 261 weeks (01/06/2012-12/30/2016, stooq.pl), α = 0.01

Source: own elaboration.

4.	Conclusions

An enterprise willing to introduce the VaR concept for financial reserves 
calculation may benefit in a much more precise picture of currency risk. Knowing 
the amount that covers the future volatility of a  receivable or a  liability which 
depends on foreign currency changes with a given probability level is not what 
an ordinary enterprise (especially small and medium) is usually going to get in 
terms of financial reserves calculation. The Monte Carlo approach simplifies the 
calculation of VaR which should be an argument for smaller economic entities 
suggesting a casual usage. In the Monte Carlo approach, it is also very easy to use 
other than normal distribution.

Taking into account the aim of the paper it has been shown that the Monte Carlo 
based model for forecasting currency risk can be easily developed in a spreadsheet. 
Such a computer model can be perceived as a flexible solution because the normal 
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probability distribution can be easily replaced with any probability distribution that 
fits better to currency changes.

The calculations performed for the case study clearly suggest that using the normal 
probability distribution may undoubtedly lead to different outcomes than using the 
best fitting distribution. The frequently fitted distribution for the considered set of 
currencies was hyper secant distribution or logistic distribution in both historical 
periods taken into account.
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PROGNOZOWANIE RYZYKA WALUTOWEGO 
W PRZEDSIĘBIORSTWIE Z WYKORZYSTANIEM SYMULACJI 
MONTE CARLO

Streszczenie: Przedsiębiorstwo niefinansowe posiadające należności lub zobowiązania denominowa-
ne w walucie obcej pozostaje w ekspozycji na ryzyko walutowe. W szacowaniu rezerwy finansowej, 
niezbędnej do zabezpieczenia swoich należności lub zobowiązań, przedsiębiorstwo może skorzystać 
z koncepcji wartości zagrożonej (Value at Risk). Wyznaczenie wartości zagrożonej dla należności lub 
zobowiązania wymaga znajomości rozkładu prawdopodobieństwa wartości przyszłej. Jednym z roz-
wiązań może być założenie o geometrycznym ruchu Browna kursu walutowego. Celem artykułu było 
wskazanie, iż zastosowanie symulacji Monte Carlo w prognozowaniu ryzyka walutowego przedsię-
biorstwa jest podejściem przejrzystym, łatwym w  implementacji i  elastycznym w zakresie założeń. 
Elastyczność podejścia Monte Carlo polega na możliwości przyjęcia założenia, że zmiany pozycji wa-
lutowej przedsiębiorstwa spowodowane wahaniami kursu walutowego mają inny niż normalny rozkład 
prawdopodobieństwa.

Słowa kluczowe: finanse przedsiębiorstwa, ryzyko finansowe, analiza ryzyka, Monte Carlo.




