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A perspective shape-from-shading method 
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Shape-from-shading (SFS) is an approach of 3-D shape reconstruction from only one image.
A new perspective SFS method is proposed in this paper. Firstly, a reflectance map equation
under perspective projection is introduced. Then, the reflectance map equation turns into
a static Hamilton–Jacobi equation. So the SFS problem is formulated as a viscosity solution
of the static Hamilton–Jacobi equation. The fast sweeping numerical method is used to solve
the Hamilton–Jacobi equation and a new SFS method is gained. At last, experiments on both
synthetic and real images are given. Experiments on the synthetic image show that the proposed
SFS method is fast and accurate. Results of the real image show the efficiency of the proposed
method when dealing with complicated real surface, and new criteria to evaluate the performance
of the method are proposed.
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1. Introduction

Shape-from-shading (SFS) is an approach of 3-D shape reconstruction from only one
image, which is a classical 3-D measure method in computer vision [1]. SFS
reconstructs the 3-D shape of a surface based on the reflectance map equation
satisfied by each pixel point of image [2]. The development of SFS mainly depends
on two aspects, the search for suitable reflectance models and the investigation into
the effective SFS algorithms [3]. The original SFS algorithm was based on the principle
of variations [2]. SFS is widely applied in industry inspection, terrain analysis such as
the moon or oceans [4–6], and so on.

The first SFS method was proposed by Horn in the early 1970s [1]. This approach
was based on minimizing the total error function consisting of one or several
constraints such as brightness, smoothness, and so on. After the SFS problem was
proposed, different new computational techniques have been introduced into SFS by
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both computer vision and mathematical workers. Zhang classified the traditional SFS
computational approach into four categories [2]. Neural networks methods have also
been recently employed [3, 7]. Lately, a statistical approach has been proposed [8].
3-D SFS reconstruction based on a more general, varying reflectance model was
proposed in 2005 [9]. Among these methods, a partial differential equations (PDEs)
based SFS method is an important kind of a reconstruction method. Characteristics-
-lines method in [1] is the earliest one. And an optimal control theory can be used to
solve the PDEs of SFS [10, 11]. SFS is also formulated as viscosity solutions of static
Hamilton–Jacobi (H–J) equations [12, 13]. There are mainly two classes of numerical
methods for solving static H–J equations in SFS. The first class is based on
reformulating the equations into suitable time-dependent problems. The heat
equation of SFS [14] proposed recently belongs to this class. In the other class of
numerical methods, the problem is treated as a stationary boundary value problem: it
is discretized into a system of nonlinear equations. Such methods are the fast marching
method [15], and level set method [16]. The merit of a viscosity solution theory in
dealing with SFS is the following. Firstly, the ill-posed problem can be refined as
a well-posed one. Secondly, reflectance models can be chosen flexibly, so SFS can
be easily solved under both orthographic and perspective projection. The numerical
methods of PDEs are consistent with digital characteristics of images.

Based on the viscosity solution theory, a new perspective SFS method is proposed
in this paper. The reflectance map equation is formulated under perspective
projection and turned into a static H–J equation. The SFS problem is a viscosity
solution of the static H–J equation. Then, the fast iterative sweeping numerical
method [17] is used to solve the H–J equation for its accuracy. Experiments presented
in the fourth section show that the proposed shape reconstruction algorithm is more
accurate than existing ones, such as the fast marching method [15]. The remainder of
this paper is organized as follows. Section 2 introduces the reflectance model under
perspective projection, and new H–J equations are derived. The fast sweeping
numerical method and Gauss–Seidel iterations are discussed in the third section, and
the flow chart of the proposed SFS algorithm is also given in this section. Experiments
on both synthetic and real image are reported in Section 4. At last, conclusions are
drawn in the fifth section.

2. Hamiltonian of perspective SFS
The brightness of image points mainly depends on four factors: the orientation of
a light source, the location of a camera, the orientation of an object and the reflectance
properties of the surface. SFS methods are based on satisfying the reflectance map
(equation below) at each imaged point [2]

(1)

where I (x, y) and R (x, y) denote the image grey values and the reflectance map
separately, and z = z (x, y) is the shape function to be reconstructed. Following,

I x y,( ) R x y,( )=
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n denotes the surface normal, s is a light source vector. Two kinds of extreme
reflection models, namely diffuse reflection and specular reflection, are usually
considered in computer vision. In our SFS algorithm, the reflectance model is assumed
to be a Lambertian (diffuse) reflectance model. When grey values of the image and
the reflectance map are both normalized as E (x, y) and R (x, y), the normalized
reflectance map equation is described as

(2)

where Imax and Imin denote the maximum and minimum grey values of the captured
image. Classical reflectance maps of SFS are mainly based on orthogonal projection.
We will formulate the reflectance map (Eq. (2)) under perspective projection
illustrated in Fig. 1.

In Figure 1, a scene surface S is defined as z = z (x, y). An image pixel is denoted
as (u, ν ) at the imaging plane z = –f, where f  is the focal length. The perspective
projection equation is x/u = y/ν = –z / f. Thus, the surface S can be written as

So the unit normal vector of the surface is given by [15] as

(3)

where (zu, zν) = (∂z/∂u, ∂z/∂ν ), and s = (–p0, –q0, 1) denotes the light source vector.
When (3) is substituted into (2), we get the reflectance map under perspective
projection in the imaging plane:

(4)

E x y,( )
I x y,( ) Imin–
Imax Imin–

----------------------------------- R x y,( ) n s
n s

----------------= = =
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u

----------– fz
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Fig. 1. Camera model using perspective projection.
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When we denote

(5)

and rearrange (4), we have

(6)

Then, the corresponding H–J equation of SFS is

(7)

3. Fast sweeping algorithm for H–J equation of SFS

The fast sweeping method is based on the Lax–Friedrichs (L–F) monotone numerical
Hamiltonians to approximate viscosity solutions of static H–J equations [17].
The Gauss–Seidel iteration and alternating sweeping scheme can be used in
computation procedures in order to achieve the fast convergence. One of the merits of
the fast sweeping method is that it can handle both convex and non-convex functions.
The sweeping algorithms are fast since they do not require a sorting-heap structure
required in the fast marching methods. We consider the following static H–J equation

(8)

where Ω  is the image domain in R2, and Γ  is a subset (boundary) of Ω.
The Hamiltonian H is a nonlinear Lipschitz continuous function. Let us consider
a uniform discretization: {(ui, νj), i = 1, 2, ..., M; j = 1, 2, ..., N} of Ω with grid size
(Δu, Δν ). The L–F Hamiltonian is

(9)

where p± and q± are corresponding forward and backward difference approximations
of p and q, and σx and σy are artificial viscosities satisfying
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From (5), we denote Zi, j = lnzi, j  and

(10)

When (10) is substituted into (9), and rearranged as

So, the iterative formula is

(11)

where k is an iteration step. There is no superscript in the right part of (11) because
these superscripts are determined by sweeping directions of Gauss–Seidel iterations.

The fast sweeping method consists in applying upwind difference formulae, and
is based on Gauss–Seidel iterations to update unknown function values. The sweeping
direction should ideally correspond to the real direction of information propagation.
There are four different sweeping directions in SFS: i ) from lower left to upper
right; ii ) from lower right to upper left; iii) from upper left to lower right; and iv) from
upper right to lower left. If sweeping is from left-down to right-up, then 

,   because the newest values are used in
the Gauss–Seidel iteration. Other situations are similar when we deal with other three
sweeping directions using the Gauss–Seidel iteration.

There are mainly three steps: initialization, alternating sweeping, and enforcing
computational boundary conditions during the iterative procedures of computing (11).
Consider a uniform discretizationof {(ui, νj), i = 1, 2, ..., M; j = 1, 2, ..., N} of imaging
the domain denoted as Ω  with the pixel size Δu = Δν,  where the resolution of the image
is M × N. The new fast sweeping algorithm of SFS is summarized as follows.

pi j,
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Initialization: Fix exact values on the boundary of the domain, and extrapolate
values near the boundary according to boundary conditions. These values are not
changed during the iterations. For other pixel points, a large positive value C is
assigned, where C should be larger than the maximum of the solutions, and these
values will be renewed during the process of iterations.

Alternating sweeping iteration: At iteration (k + 1),  are calculated
according to (11) at all pixel points {(ui, νj)} except for those with fixed values. And
Zi, j is updated only when  is less than the previous value . This process
changes four different directions alternatively, as discussed above, namely i ) i = 1: M ,
j = 1: N; ii) i = M :1, j = 1: N; iii ) i = 1: M , j = N :1; and iv) i = M :1, j = N :1.

Renewing boundary values: On the boundary, a set of conditions should be
imposed, suggested in [17] as

(12)

If the boundary is not rectangle, similar computation is also valid. Linear extrapolation
is also an alternative choice [17].

Stop criteria: If  where δ is a given positive threshold value,
the computation stops.

4. Experimental results

To evaluate the performance of the proposed SFS method, we have done series of
comparing experiments with fast marching SFS methods proposed recently [15].
The fast marching method is fast and effective according to reference [15]. Small
iterative times are required in the fast marching method. And both orthographic and
perspective projection can be dealt with. Experiments on both synthetic and real
images are performed. Reconstructed 3-D shapes from synthetic images are shown
and numerically compared with the real shape to illustrate the accuracy of
the reconstruction methods. Reconstruction results from real images are also given
and new numerical comparing criteria using a reflectance map are also proposed. All
the algorithms are realized under the following conditions: hardware – CPU-AMD
1.7 GHZ, RAM-256MB; software – Windows 2000 and Matlab 6.5.
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4.1. Experiments with the synthetic image of a vase
The original 3-D shape and synthetic image of a vase (13) [3] generated mathematically
by equation (6) are shown in Figs. 2a and 2b.

0 ≤ |u| ≤ 0.5, 0 ≤ ν ≤ 1

(13)
z u ν,( ) 0.15 0.1ν 6ν 1+( )2 ν 1–( )2 3ν 2–( )–

2
u2– ,=

Fig. 2. Reconstructed 3-D shape of a synthetic vase: the original shape of a vase (a), the synthetic image
of a vase (b), reconstructed shape by the proposed method (c), the deviation of fig. c from a (d),
reconstructed shape by Tankus [15] (e), the deviation of fig. e from a (f ).
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The direction of light and the focus length f  in Eq. (6) are (0,0,1) and 100,
respectively. Pixels of the image are 100×100. The synthetic image is produced
by multiplying values of the normalized reflectance map with imaging coefficient
255. The surface reconstructed using the proposed method is shown in Fig. 2c after
30 iterations. Figure 2d shows the deviation of the 3-D shape reconstructed using
the proposed method from the original surface. In Figures 2e and 2f there are
reconstructed shapes obtained using the method of Tankus [15] and the deviation of
the 3-D reconstructed shape from the original surface after the same number
of iterations. The unit in figures is a pixel. In our experiments, the height of
the reconstructed 3-D surface was normalized after each iteration due to an interesting
characteristic shown as Eq. (5) in perspective SFS. The surfaces z (u, ν ) and K z (u, ν )
have the same reflectance map function, where K is some non-zero positive constant.

Table 1 contains the numerical results compared with the original shape of a vase
illuminated as in Fig. 2. In Table 1 there are presented such criteria as the mean error
(ME), the root squares mean error (RS) of the reconstructed shape compared with the
original shape, and cpu times T, which are used to compare the performances of two
SFS methods.

From the comparison of results illustrated by Fig. 2 and Tab. 1, we can see that
the proposed fast sweeping method is more effective than the fast marching method
of [15]. The main drawback of the fast marching method of [15] is that the depths of
local minimal or maximal points should be given before iterative computation.
Otherwise a distortion of a reconstructed shape may occur. In our experiments, because
we only want to compare the performance of the proposed method with the fast
marching method, the depths of local minimal or maximal points are not pointed.
So in the reconstruction results shown in Fig. 2e an obvious distortion around the top
of the vase occurs. Table 1 shows that both methods can give a stable resolution after
15 iterations. The fast marching method is more accurate than the proposed method at
first several iterations. But the final stable reconstructed shape of the proposed method

T a b l e 1. The comparison of numerical results of the proposed method with Tankus’ method [15] of
a synthetic vase. 

The proposed method Tankus’ method 
Iterations ME (pex) RS (pex) T (sec) ME (pex) RS (pex) T (sec)

1 0.0934 0.1698 1.0565 0.2213 0.3840 1.2020
5 0.0555 0.1122 5.4375 0.0248 0.0563 6.2340

10 0.0389 0.0788 10.8255 0.0324 0.0784 13.0185
15 0.0304 0.0620 16.2685 0.0392 0.0881 19.3225
20 0.0274 0.0560 21.7615 0.0396 0.0885 25.5265
25 0.0278 0.0564 25.3260 0.0397 0.0885 32.2610
30 0.0272 0.0559 31.9210 0.0396 0.0885 40.4710
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has smaller mean error (ME) and root squares mean error (RS) than the fast marching
method. The numerical error in both methods may be produced by discrete sampling
of imaging and discrete difference approximating. Table 1 also shows that the proposed
method is slightly faster than the fast marching method. 

4.2. Experiments with real image
Figure 3a shows a real image of metal statuary of Qian WueSeng captured by us in
Xi’an Jiaotong University using Cannon digital camera after mean filtering. A focus
length f  is 40 mm. Pixels of images are 320×280. Because the width of the statuary is
about 40 cm, the focus length f  is 28 pixels in image coordinates. Because the flash
light of the camera is the light source, the direction of light is (0,0,1) approximately.
Figure 3b is the reconstructed shape obtained using the proposed method after
30 iterations. Figure 3c is the reconstructed image obtained using the reflectance map
equation (6) calculated from the computed surface using the proposed method.
Figure 3d is the reconstructed shape obtained using the method of Tankus [15] after
the same number of iterations. Figure 3e is the corresponding reconstructed image
obtained using the same reflectance map equation calculated from the computed
surface using the method of Tankus [15].

In this experiment, the real surface of metal statuary was difficult to measure.
So we compared numerically the pixel values of the images reconstructed using
the reflectance map equation (6) with the pixel values of the original image. Table 2
presents the numerical result of the pixel values of the reconstructed images using
two methods compared with the original image of the statuary illuminated in Fig. 3a.
In Table 2, the criteria such as mean error (ME) of the pixel values of the reconstructed
images compared with the original image, root squares mean error (RS) of the pixel
values of the reconstructed images compared with the original image and cpu times T
were used to compare the performances of two SFS methods. The units of ME and RS
are 8bit (256) grey-level, and the unit of cpu times is second.

After comparing the results illustrated by Fig. 3 and Tab. 2, we can see that
the proposed method is more accurate than the fast marching method of [15]. In this
experiment, because the boundary conditions are not known, we assumed zero
boundary conditions in both reconstruction methods. But both methods are sensitive
to the boundary conditions. So the presence of an error in the reconstructed 3-D shape
is obvious. And for the fast marching method, because the depths of local minimal or
maximal points are unknown, there exists a great distortion in the reconstructed 3-D
shape shown in Fig. 3d. The reconstructed 3-D shape of the proposed method
shown in Fig. 3b is more vivid than in Fig. 3d. The reconstructed images obtained
using the reflectance map equation (6) calculated from the reconstructed surface using
the proposed method and Tankus’s method shown in Figs. 3c and 3e, illustrate
intuitively that the proposed method is more effective than Tankus’s. Furthermore,
the comparison of numerical results of the reconstructed images with the original
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image of the metal statuary shown in Tab. 2 confirms the intuition of Fig. 3. As in
the first experiment, Tankus’s method converged quickly at first 20 iterations. But
the proposed method exceeded Tankus’s method when they tended to stable solution.

Fig. 3. Reconstructed shape of metal statuary of Qian WueSeng: captured image after mean filtering (a);
reconstructed shape obtained using the proposed method (b); reconstructed image obtained using
the reflectance map calculated form the computed surface using the proposed method (c); reconstructed
shape obtained using the method of Tankus [15] (d); reconstructed image obtained using the reflectance
map calculated from the computed surface using the method of Tankus [15] (e).
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We also see that the proposed method is faster than the compared method per iteration.
Besides the numerical error, in both methods produced by discrete sampling of imaging
and discrete difference approximating, the imaging model error is inevitable.
Highlight, namely the specular reflectance of an acquired image should be included
into the reflectance model for metal surfaces. But investigators seldom considered this
problem. This may be the subject of our further study.

5. Conclusions

In this paper, a new perspective SFS method is proposed. Using the conception of
viscosity solution of static H–J equation and fast sweeping numerical scheme, the SFS
problem under perspective projection is solved. The experiments are performed both
on synthetic and real images. As for synthetic images, numeric comparing criteria such
as mean error and root squares mean error of reconstructed 3-D shape with original
surface and cpu times T were used to evaluate the performance of the proposed method.
As for real images, new numeric comparing criteria such as mean error and root squares
mean error of pixel values of reconstructed 2-D images with pixel values of the original
images were proposed. Experiments on synthetic images and real images show that
the proposed SFS is fast and accurate and may be used to deal with complicated
surfaces. Shape from shading under perspective projection is one of main directions
of SFS. How to formulate the reflectance map equation using more suitable reflectance
models under this kind of projection framework is an interesting issue. We are also
investigating how to deal with boundary conditions of viscosity solution of static
Hamilton–Jacobi systems in SFS.
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