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Forest fires smoke monitoring
from Sea-viewing Wide Field-of-view Sensor images
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A method for detecting forest fires smoke usBepWiFSSea-viewing Wide Field-of View Sensor)
images is developed in this paper. The colour masking techniguepigsed to extract the maximum
fires smoke pixels from th8eaStalSeaWiFSatelliteimages by using Fusion by Arithmetic Com-
bination FAC) of the spectral bands method. Each image used is confrentedRGB (Red, Green,
Blue) to HIS (Hue, Saturation, Intensity) system. The tegukmoke plumes pixels are obtained
visually in the Intensity and Saturation images. Then the valugeofsity and saturation are ana-
lyzed to be potentially applied in other images. In this reseametapplied our detecting forest fires
smoke algorithm in seven different scenes, and in a varietyndiitems, including different regions
of the planet, and different dates. Next, Smoke Pixel Refefeatie SPRR was used to test the
proposed method. We found that the method can detect maximumagfiset®ke plumes in spite of
some limitations.
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1. Introduction

Biomass burning has tremendous impact on the Earth’s ecosystemsnaaie,cfor
it drastically alters the landscape and vegetation patterns aigllarge amounts of
greenhouse gases and aerosol particles [1-3]. Smoke aerosols mat/ witkreloud
droplets [4, 5] and alter considerably the Earth’s radiation budget [BsZ&ssment
and understanding of the wide-reaching and long-lasting effects of firdseoenvi-
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ronment and climate entails a good knowledge of the spatial distributibtesporal
variation of fire activity on a global scale [8]. This may be acldemay through the
use of remote sensing technologies, which provide an efficient and ecohorais
of acquiring fire information over large areas on a routine basipitdearious limi-
tations and shortcomings [9, 10].

A forest fire can be a real ecological disaster, regardleshether it is caused by
natural forces or human activity. It is impossible to control nahueit is possible to
map forest fire risk zones and thereby minimise the frequencyepfafiert damage,
etc.[11].

Automated fire detection algorithms are used for NOAA’s Geastaty Opera-
tional Environmental Satellites (GOES-10 and 12) and Polar Orbitinga®meal
Environmental Satellites (POES, NOAA-15, 16 and 17). The ModeratelUties
Imaging Spectroradiometer (MODIS) from NASA’s Terra and Apmcecraft
(MODIS fire detection) is performed using a contextual algorithat exploits the
strong emission of mid-infrared radiation from fires. The algorigwamines each
pixel of the MODIS swath and ultimately assigns to each one obllegving classes:
missing data, cloud, water, non-fire, fire, or unknown. The Wildfire Auteth®io-
mass Burning Algorithm (WF_ABBA) is employed for GOES imagery. The
WF_ABBA is a dynamic multi-spectral thresholding contextual algorithat uses
the visible (when available), 3@, and 10.7um, infrared bands to locate and char-
acterize hot spot pixels. Descriptions of the algorithm can be fourtdeatink:
http://cimss.ssec.wisc.edu/goes/burn/publications.html.

The NOAA polar orbiting satellites use the Firentification Mapping and Monitor-
ing Algorithm (FIMMA), which is described at linkittp://www.ssd.noaa.gov/PS/FIRE/
Layers/FIMMA/fimma.html.

Fire detects from MODIS are obtained using the @aigms described at
http://modis-fire.gsfc.nasa.gov/methodology.asp.

It should be noted that many of the fires detected by these algodatemn®st wild-
fires but rather agricultural or control burns and there is no pttendistinguish be-
tween the two [12]. The most serious problems suffered by NOAA Higwiare
caused by the saturation of channel 3 (3.7 pm) in AVHRR (Advanced Vety Hi
Resolution Radiometer) and its contamination by solar reflection. Tixepn is an-
ticipated to be resolved or lessened by the MODIS sensors due tochigion of
a special fire channel (3.9 um instead of 3.7 um) that has a éijdamic range and
is less influenced by solar reflection [13]. The most challengirig &count for the
contribution of solar radiation due to the reflection from cloud and Easilrfaces.
The majority of the algorithms include cloud screening tests thatas®nably effi-
cient in removing false alarms by clouds.

Due to the similar appearance of smoke and clouds, identificatiomaiesis
better achievedy using SeaStdiSeaWiFSradiometer, because it has wide spectral
coverage comprising the visibleh(1 0.41 pm, tach.§ 0.67 pm), and near-infrared
(ch.7, 0.76 pm ancath.8 0.86 pm) wavebands. All channels pertain to certain attrib-
utes of fire smoke plume, but contain different information.
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SeaWiF3neasures light intensity in several bands. Thesmrements allow quantifi-
cation of light absorption and subsequent estimatitdfires. SeaWiFSmproves by hav-
ing better bands for atmospheric correcticg, (removing the effect of light scattering by
the Earth’s atmosphere), which will particularlg #ie estimation of forest fires smoke.

In light of their unique and important rol8eaWiFSsmoke detection scenes are
the focus of this work. This paper presents an idea which derivesttiefiusion of
the satellite images. The images resulting from only one prooces®taienough with
the thematic requests for the diagnosis and the treatHowever, to separately ob-
serve a series nultimode images of esame object is not a better solution. The fu-
sion of these data is thus a paramcstagt.There are three methods of fusion:

1. Statisticamethods like PCA (Principal Component Analysis) method.

2. Methods resulting from signal processing, IRET (Wavele Transformer)
method.

3. Colorimetric methods, likeFAC (Fusion by Arithmetic Combination) of spec-
tral bands method.

TheFAC method is classified in ttcolorimetric part, because it is often used with
an aim of visual improvement of the data. Of all the methods udedsimplest, how-
ever, its effectiveness depends on the data itThe images are mixed by addition
and/or subtraction and/or prod, after D-sampling of the data to the same size. This
method is selected in this work.

Each image in this paper is converted frRf@B (Red, Green and Blue) field to
HSI (Hue, Saturation and Intensity) field. We seek to obtain the maxioftsmoke
plumes pixels on the imag, then one looks at the values taken by intensity and satu-
ration for potentially applying them to other images in routine.

2. Material

2.1. Sensor description

The SeaWiFSnstrument on board of thBeaStarspacecraft is an eight-band radi-
ometer covering wavelengths between 402—-885 nm.

The SeaWiFSnstrument consists of an optical scanner and an electronics module
(line drawing). Table 1 is a listing of the central wavelengths amdiviidths for
SeaWiFSApplications for imagery include fishing, agriculture, naval operatians, a
environmental [14].

Table 1.SeaWiFSensor description.

Instrument Bands

Band Wavelength
1 402-422 nm
2 433-453 nm
3 480-500 nm
4 500-520 nm
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Table 1. Continued.

5 545-565 nm

6 660—680 nm

7 745-785 nm

8 845-885 nm

Mission characteristi

Orbit type Sun synchronous at 705 km
Equator crossing Noon +20 min, descending
Orbital period 99 minutes

Swath width 2.801 km LAC/HRPT (58.3 degrees)
Swath width 1.502 km GAC (45 degrees)
Spatial resolution 1.1 km LAC, 4.5 km GAC
Real-time data rate 665 kbps

Transmission frequency 1702.5 MHz (encrypted)
Revisit time 1 day

Digitization 10 bits

2.2. SeaWiFSlevel-1A data

There are Level-1A products for each of the following data types: lggoba cover-
age GAQ), local-area coverage AC), lunar calibration, solar calibration, and High
Resolution Picture TransmissioRIRPT) for direct-readout data [15(zAC data are
sub sampled from full-resolution data with every fourth pixel of a Bear{from LAC
pixels 147 to 1135) and every fourth scan line being recorded for each sheath (t
Earth data collection portion of an orbit). Th@A\C data are comprised of 2048 pixels
per scan line, whereas all other types are comprised of 1285 pixetsae line.

A GACscene will also represent an entire swath; whet@d&sscenes are defined by
the number of continuously recorded scans,lR&Tscenes are defined by the num-
ber of continuously received scans from one satellite pass [16].

2.3. Smoke and fires detection

SeaStar/SeaWiF&diometer, has two major advantages for fires smoke monitoring.
First, the instrument provides daily coverage of the entire plaretratderate spatial
resolution (approximately 1 km), which is critical for operational gldibalmonitor-
ing. Second, it has wide spectral coverage comprising the visiblg 0.41 pm, to
ch.g 0.67 um), and near-infraredh(7, 0.76 um anah.8 0.86 pm) wavebands. All
channels pertain to certain attributes of fire smoke plume, but oatitéérent infor-
mation. Smoke is more discernible in the visible channels, which lemsdveployed
to estimate fire smoke and trace gas emissions [17]. Howevetp dhe similar ap-
pearance of smoke and clouds in each SeaWiFs visible channel,icdéotif of
smoke is better achieved wilRGB (R: Red,G: Green,B: Blue) andHSI (H: Hue,
S: Saturation|l: Intensity) combinations of these channels [18].
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3. Methods

3.1. RGB to HSI components conversion

The colour of a pixel with coordinates, §), denoted a$(x, y), is a triplet €, g, b),
wherer, g, andb are the intensities of tHe G, andB components, respectively. The
origin (0, 0) is at the upper-left comer of an image withxtais horizontal and the
y-axis vertical.

The three components of thiS| colour model (Fig. 1) are hukl), saturation $),
and intensity I, or brightness). Hue represents a dominant (pure) colour as perceived
by an observer. Saturation refers to the amount of white light mixédasue. Two
important facts make thdSI colour model useful to simulate the colour sensing prop-
erties of the human visual system. First, the intensity componentasigled from
the colour information in an image. Second, the hue and saturation compargents
intimately related to the way in which human beings perceive colourgébmmetric
conversion from the familigRGB colour model to th&lSI colour model can be found
in Fig. 1. In the following Egs. (1)—(4), the formulas for conversion atedifor ref-
erence [19].

RGB system HSI system
White White Intensity
White Green
Green Saturation
White Blue Hue Red
Blue
Black Green
-
White Red

Black Blue Black Red

Black
Fig. 1. Geometric representation of RGB and HS3esys.
.1
==(r+g+b) 1)
3
3 .
s=1 —[mln(r, g,b)] 2)

(r+g+h)
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6 if b<g
h= . 3)
360-6 if b>g

where
%[(r ~g)+(r -b)]
[ - 9)2+(r -b)(g-b)|

fd=se e (4)

3.2. Building a smoke plume featur e model

In the study of image-based smoke detection, lieisessary to build a more precise
smoke plumes feature modfelr vision-based smoke plumes detection systems. In
this research, we used tv8eaStaiSeaWiFSmagescarrying various dates and ar-
eas to analyze the colour features of smoke pluacesrding to theHSI colour
model.

A colour setC, is a set of colours such that for each colour irstterepresented
as a triplet lf, s, i) in the HSI colour model, the following conditions are satisfied:
[Pmin € N < iads [Smin € S < Smad, @N, [nin < i < imay] iN Which [hyin, hnad is the range
of hue, Bnin, Smay IS the range of saturation, angdif, imay is the range of intensity of
the colour se€. Formally, the colour set may be denoted as:

C(h, S,i) ={(his’i)|hmin <hs hmax’smin sss Smax’imin <is< Imax} (5)

The colour separation algorithm for an input iméddge, y) based on some smoke
plumes colour set is as follows: or each pixel in the image, if theocwlof the pixel
does belong to the colour set, then set the pixelcatored; otherwise, keep the pixel
colour unchanged (a background colour, unchanget. result image(x, y) after
performing the above colour separation can be reptedeas:

g(x,y):{red if f(x,y)OC ®)

f(x,y), otherwise

4. Results and discussions

In our case, we have used Local Area Coverage LEvéhages with spatial resolu-
tion of 1.1 km at nadir. This class of filenames begiith the following convention:
syyyydddhhmmssvheres denotes the sensor (currenByfor SeaWiFSA for Aqua-
MODIS, andT for Terra-MODIS, yyyyis the yearddd is the day of the year (001—
366),hhis the hour TC) when the sensor began collecting the scene’s dat23D0
mmis the minute (00-59), arssis the second (00-59).
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Each image product in this paper is generated froooreesponding Level-1A
product. The main data contents of the product la@egeophysical values for each
pixel, derived from the Level-1A raw radiance cauhy applying the sensor calibra-
tion, and atmospheric corrections.

The radiometric operation of calibration is usedlimi@ate the side effects on the
rough images. They are corrections of the true bmggd measured by the radiometer
SeaWIF in order to eliminate the effects of the atmosplrerd the solar angle of
illumination. Therefore, the effect of incoming sotadiation on the mod:colorimet-
ric is compensated.

Ch1:0.41 pm Ch2: 0,44 pym Ch3: 0. %Chél 0.51 um Ch5 0.55 um Ch6:Q.67 pm  Ch7:0Q.76 um Chs: 0 86 um

Ch1: 0.41 pm

Ch2: 0.44 ym Ch3: 0.49 pm Ch4: 0.51 pm Ch5: 0.55 um Ch6: 0.67 pm

e

Ch7:0.76 pm

Ch8: 0.86 um

Fig. 2. Eight spectral channelsiofage A(reference image) with the representation of therabspectral
wave of each band) eight spectral channels iofiage Bwith the representation of the central spectraleva
of each bandh).

Figure & shows the eight raw channels (6 visible adiR) of imageA (labelled
in this work); all channels are splitted and radiometty calibrated by usindgeNVI
Software (the Environment for Visualizing Images, &#sh Systems, Inc., Boulder,
USA). The file of this image name®2000238120538.L1A_MLA®as received from
official source QCEANCOLOUR GSFC NASA W&ta base). In this case, our image
was received on day 238 (25 August) of year 200Q@ &5138UTC.
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For each band, the detector measures the inteokitye light that reaches the
sensor. When these data are displayed visuallyrabelt is a series of gray-scale
images. Notice how different features have diffeéiatensities in the various bands.
For example, clouds and water appear bright intilue and purple bands, while
land is dark. In the red and infrared bands, thisland that is bright, while the wa-
ter is dark.

Image A is used to process forest fires smoke pixels cayéhie North African
Coast. Because of the important number of forest §ineske pixels on this image, it
is considered like the reference image in this work.

Fig. 3.R: ch3 G: ch2 B: ch1combination result.

By RGB combination between visible channels 3, 2 andctessively R: ch3,
G: ch2 B: chl) from imageA, we can watch clearly the smoke from fires aldmg t
North African coast Fig. 3. This combination moktsely represents fires smoke in
the visible spectrum. Winds generated large quastiif smoke dust storms, which
blanketed the Mediterranean Sea. This event caxisoeclearly watched on the high
right part from image of Fig. 4. This image waslis=al by combination between the
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visible and theNIR channels. We have used the following combinaforch7, G:
ch4 B: chl

Fig. 4.R: ch7, G: ch4, B: chlcombination result.

The colour separation algorithm is applied to chadn@ and 3 from imaga, by
usingr: ch3 g: ch2 b: chlcombination in Eq. (1). The result image is giveirig. 5.

In this image, we can watch the intensity edges of snmimes presented as red
colour separation.

Saturation pixels are calculated by using the saméiration (.e.r: ch3 g: ch2
b: chlcombination) in Eg. (2), the result is given in Fégln this image, the region of
interest was selected, and the red mask of separatesemnis the areas of smoke
plumes.

The other event, on 13 September 2003 — a hugeephiramoke drifts westward
over the Atlantic Ocean from a massive forest fir&South-Western Portugal. This
event (imageB of Fig. 2v) is acquired by Sea-viewing Wide-Field-of View Sans
(SeaWiF%from theSeaStasatellite.
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Fig. 5. Extraction of the edge of fires smoke ixebm the intensity image (imagé

Fig. 6. Extraction of maximum fires smokes pixetsif saturation image (imag.

A. HassINl et al.
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Figure 2 shows the eight spectral channels of the ini@all channels are radi-
ometrically calibrated)whose file is name®&2003256132227. L1A MLA®as ac-
quired on 13 September 2003 and covers the forest §imoke pixels in the south
west of Portugal. This image is used to validate cggarch.

The HIS color model has been adopted because it is intimatelyetetatthe way
in which human beings perceicolors. According to the empirical analysis of the set
of forest fires images, the hue values for forest filmsies from red to yellow are
usually in the range of [0°-60°]. The range of [2€880°] includes the higher tem-
perature flames. This point is not discussed in our relsear

The intensity values in imag®are in the range [230, 980] and, on the other hand
the intensity values in image are in the range [184, 1023]. The saturation values
after normalization are distributed in the range1[0Q] in the two images. By using
colour separation algorithm (Eg. (6)) in imafyethe saturation values from the smoke
pixels are in the range [65, 80], and the intensithu@s from the smoke pixels are in
the range [780, 800].

Fig. 7. Extractions of the edge of fires smoke Ipii®m the intensity image (ima@g.

By using the samBRVB combination and the same intervals of the smoke gdum
extracted from imag@ and Eq. (1), Eq. (2) and Eq. (6) (Saturation: &D], Inten-
sity: [65-80], Hue: [0°-60°] ), the active forestefirsmoke locations in ima@:shave
been enhanced and edged in red colour. In Fig.d7Fam 8, we can watch respec-
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tively, the intensity edges and saturation pixels ofl@mumes presented as red col-
our separation. The limit values for the fires smokih \WiSI system are summarized
in Table 2 for each image.

Table 2. List of images used.

i ... Starttime .
Environment Date of acquisition of acquisition UTC) Region
'T“age A 25 August 2000 12 h 05 min 38 sec  North of Algeria
(image reference)
Image B 13 September 2003 13 h 22 min 27 sec  South West of Portugal
Image C 24 March 2003 06 h 12 min 10 sec  South of the United Sfateseoica
Image D 20 December 2002 11 h50 min 15sec  West of Africa
Image E 23 January 2003 18 h 21 min 09 sec  South East of Australia
Image F 05 January 2005 08 h 33 min 45 sec  Dominican Republic and Haiti
Image G 20 May 2001 10 h 20 min 55 sed\"90/2 and Democratic Republic

of the Congo

Fig. 8. Extraction of maximum fires smokes pixets1i saturation image (imag.

For each image (imagk and imageB), we use®-D scatter plots to presefites
smoke pixels distribution for each image combinatiolected (visible channels:
channel 2 with channel & channels: channel 7 with channel 8), to comparditbe
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smoke pixels in two selected bands as both a scatteampdoin terms of their spatial
distribution in each image. Blue pixels show the distibn of fires smoke pixels
(Fig. %—9d).

We can observe that fires smoke pixels distributidooth Fig. @ and Fig. @ (visible
channels combination) presents a larger part comgarddg. 9 and Fig. 9 (IR
channels combination), which follows from the facattsmoke from forest fires is
more discernible in the visible channels.
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Fig. 9.2D scatter plots with fires smoke pixels distributiomageA, ch7, andch3 (a), imageA, ch7
andch8(b), imageB, ch2andch3(c), imageB, ch7 andch8 (d).

The proposed forest fires smoke method is tested wighdilker scenes of images
(imageC to imageG in Table 2) for a variety of conditions, includinigfferent re-
gions of the planet and different times. The expeniaeresults of the proposed
method are shown in Table 3.
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Table 3. Features of fires smoke.

Environment Hue [°]  Saturation (S) Intensity (1)
Image A (reference) 0-60 0-100 230-980
Smoke plume coverage A 65-80 780-800
SPRR [%)] 0 0

Image B 0-60 0-100 180-1023
Smoke plume coverage B 66-81 782-800
SPRR [%] 0.342 0.0633
Image C 0-60 0-100 130-986
Smoke plume coverage C 65-79 780-801
SPRR [%] 0.346 0.0316
Image D 0-60 0-100 240-980
Smoke plume coverage D 65-82 779-802
SPRR [%] 0.685 0.0949
Image E 0-60 0-100 156-898
Smoke plume coverage E 66-81 780-800
SPRR [%] 0.342 0.0
Image F 0-60 0-100 80-1020
Smoke plume coverage F 64-80 781-798
SPRR [%] 0.346 0.0950
Image G 0-60 0-100 250-988
Smoke plume coverage G 67-79 778-799
SPRR [%)] 1.031 0.0950

Smoke Pixel Reference Rat&RRdenotes the detection rate between each image
from Table 2 and the reference image (imApdt is defined as the ratio

[\/lmax—Vlf ma>1+[\/|m|n—V|f m|n| 100

SPRRPo] = 7
RPAl Vimax+Vif max+Vimin+Vif min ()
for the Intensity images and
gnax—Vsfmax + Vanin—-Vsfmin
SPRRE%]z[V )1 [V |ElOO (8)

Vanax+Vsfmax+Vanin+Vsfmin

for the saturation images. In the above equatémaxandVsmaxindicate respectively
the maximum value of the intensity and the satomaith each image (from imageto
imageG), while Vimin andVsminare respectively the minimum value of the intgnsit
and the saturation in each image (from imAde imageG). On the other hand/ifmax
and Vsfmaxare respectively the maximum value of the intgnaiid the saturation of
forest fire smoke pixels in each image (from imé&g® imageG), Vifmin andVsfmin
are respectively the minimum value of the intensibd the saturation of forest fire
smoke pixels in each image (from ima@eo imageG). The SPRRratio is applied
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to establish the efficiency of our method to losmlihe forest fires smoke pixels for
various environments.

We can observe in Table 3 that the values ofSR&R4%] and the SPRRI[%)]
are respectively in the interval [0.342, 1.031] #@®316, 0.0950]. In general, these
results are very encouraging and promising, becausaétieod can detect maximum
pixels of smoke plumes. The largest values are observachageG, because of
a small area of smoke plumes in this scene of image 1B)g

Fig. 10. Imagé&s: Angola and Democratic Republic of the Congo negiith a small area of smoke plumes.

5. Conclusions

This paper presents an overview of one of the enwiental phenomena: forest
fires smoke. Thé&RGB combination method (colorimetric method) is the af our
present work to extract the smoke pixels. This psepwill be designed primarily
for use withSeaWiFSlata, because of the long field of view in thdbles spectrum
of the onboard sensor. Each band is displayed moaochromatic scale corre-
sponding to its appropriate color. When these abeedn they produce the entire
range of visible colors, creating an image thdtidy close to what the human eye
would perceive.

A new method derived from tHRGB combination based on the computer vision
techniques and some theory of chromatics is proposedcdlbur masking technique
is proposed to extract the maximum fires smoke pixam fthe SeaStar/SeaWiFS
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images As a result, smoke plumes pixels are obtained visualiyhe images intensity
and saturation; then one looks at the values takentbgsity and saturation for po-
tentially applying them to other images in routine.

We validated the proposed method by using other sadriggges with different
dates and different regions (seven images). The obtagselts show that the method
can detect maximum pixels of smoke plumes. We fouaddhults almost identical to
treat forest fires smoke pixels.

Some limitations of the method proposed are repredestéollows:

—this method is used only in diurnal period of day,

—smoke generated by the higher temperature flames; thit [hot discussed in
the present work,

—in a few cases, this method couldn’t distinguish clouds dust storms from
fires smoke pixels,

—small areas of smoke plumes cannot be depicted byriposed method in
some cases.
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