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In this paper, an improved expectation maximization (EM) algorithm called statistical histogram
based expectation maximization (SHEM) algorithm is presented. The algorithm is put forward to
overcome the drawback of standard EM algorithm, which is extremely computationally expensive
for calculating the maximum likelihood (ML) parameters in the statistical segmentation.
Combining the SHEM algorithm and the connected threshold region-growing algorithm that is
used to provide a priori knowledge, a novel statistical approach for segmentation of brain
magnetic resonance (MR) image data is thus proposed. The performance of our SHEM based
method is compared with those of the EM based method and the commonly applied fuzzy C-means
(FCM) segmentation. Experimental results show the proposed approach to be effective, robust and
significantly faster than the conventional EM based method. 
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1. Introduction

High spatial resolution and excellent discrimination of soft tissues are the advantages
that make magnetic resonance imaging (MRI) offer more accurate anatomical
information than other imaging modalities [1, 2]. So, MR images are widely used
not only for detecting tissue deformities such as cancers and injuries, but also for
studying brain pathology [3]. In order to offer useful and accurate clinical information,
the segmentation and recognition algorithms of MR images are becoming an important
subject of the study on medical image processing. Many methods have been
reported for segmentation of MRI in the literature. CLARKE et al. [4] gave an early
survey of MRI segmentation, and divided the techniques into the following groups:
threshold-based segmentation, statistical methods and region growing methods.
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RAJAPAKSE et al. [5] proposed a more exact summarization: the available methods for
MR image segmentation can be categorized into classical, statistical, fuzzy, and neural
network techniques. In this paper, we take the recently most frequently used statistical
approach as has been done by many others for MR image segmentation [1–3, 5–7].

Most previously reported statistical approaches used the expectation maximization
(EM) [8] algorithm to compute the maximum likelihood (ML) estimation of the
segmentation parameters. However, since the EM is an iterative algorithm, it always
meets the problem of slow convergence [6] or painfully slow computing [9], which
influences its practical clinical applications. To overcome the above problem,
an improved EM algorithm named statistical histogram based expectation maximization
(SHEM) algorithm is presented in this paper. Using this SHEM algorithm, a novel
statistical method is then proposed for segmentation of the single-channel brain MR
image data instead of the conventional EM based method. The method involves three
steps. Firstly, after pre-processing the image with the curvature anisotropic diffusion
filter, the background (BG) and brain masks of the image are obtained by applying
a combination approach of thresholding with morphology. Secondly, the connected
threshold region growing technique is employed to get the preliminary results of white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) on a brain MRI. Finally,
the previous results serve as a priori knowledge for the improved EM algorithm to
segment the brain MRI. 

The paper is organized as follows. Section 2 describes our methods for getting
the preliminary results of the brain MRI. The standard EM algorithm is briefly
reviewed in Section 3 and the SHEM algorithm is described in Section 4.
The experimental results are discussed in Section 5. Finally, some conclusions are
drawn in Section 6. 

2. Methods of obtaining preliminary results
2.1. Curvature anisotropic diffusion filtering
Acquired medical images are often degraded by various types of artifacts resulting
in the lowering of signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR) [10].
The small SNR or the low CNR make the detection of the anatomical structure
difficult. Moreover, image artifacts may affect many image processing tasks such as
segmentation, registration, and visual rendition, which are crucial in many applications.
Therefore, noise reduction is very important in many imaging applications.
The conventional filtering techniques such as mean and median filtering, along with
reducing the noise, often blur important structures such as boundaries and detailed
structures. Many authors have used the nonlinear anisotropic diffusion [10] and
curvature anisotropic diffusion [11] for medical images; the results show that these
methods can preserve boundary sharpness and fine details while suppressing noise and
enhancing SNR or CNR. 

The modified curvature diffusion equation (MCDE) is employed in this subsection.
This method has been proved more aggressive than ordinary anisotropic diffusion at
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enhancing and preserving edges and detailed structures. The MCDE equation is given
as:

(1)

where f = f (x, y, t ) and f (x, y, 0) = I (x, y) – the input image, c is called conductance
function and is a monotonically decreasing function containing a free parameter k,
which determines the contrast of edges that will significantly affect the smoothing.
Figure 1 illustrates the effect of this filter on a MRI proton density (PD) weighted
image of the brain from the digital brain phantom [12]. In this example, the filter was
run with a time step of 0.125, 5 iterations and a conductance value of 1.0. Figure 1b
shows how homogeneous regions are smoothed and edges are preserved.

2.2. Generating background and brain masks
After the image has been filtered, an initial segmentation into foreground/background
is achieved using simple intensity thresholding, thus a BG mask binary image is
produced. Then we segment the inside of the brain from non-brain tissues and remove
small connections between the brain and surrounding tissues. The segmentation
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Fig. 1. Results of applying the MCDE filter; original PD-weighted image (a), image after filtering (b).

a b

Fig. 2. Cerebral region mask produced using automatic thresholding and morphology; BG mask (a), brain
mask (b).

a b
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method used here is thresholding with morphology. The brain region is almost always
connected, often via fairly thin strands of bright pixels to non-brain tissues such as
the bone, cortex, and the fat tissues. Hence, before getting the binary brain mask, it
must be disconnected from the non-brain bright tissues. This is normally achieved by
morphological filtering, the bright regions in the binary image are being eroded away
until any links between brain and non-brain are eliminated, the largest single region
is then chosen, and it is next dilated to the same extent as the erosion, hopefully
resulting in an accurate brain mask.

We use an automated method as described in [3] to find the binary threshold;
the result of BG mask is shown in Fig. 2a. A morphological erosion operation is then
applied with a 5×5 rectangular structural element. After erosion, a labeling algorithm
is used to find the largest single region. Finally, binary dilation with the same 5×5
kernel as for erosion, is performed on the remaining region to make it close to the original
size. The final brain mask is shown in Fig. 2b. 

2.3. Connected threshold region growing

Region growing (often called flood-fill) algorithms have been proven to be an effective
approach for image segmentation. The basic approach of a region-growing algorithm
is to start from a seed region (typically one or more pixels) that is considered to be
inside the object to be segmented. The pixels neighboring this region are evaluated
to determine whether they should also be considered to be the part of the object by
homogeneity criteria. If so, they are added to the region and the process continues as
long as new pixels are being added to the region. 

A simple region growing method is introduced here, namely connected threshold.
The criterion used by the connected threshold is based on an interval of intensity
values. Values of lower and upper threshold should be provided. The region-growing
algorithm includes those pixels whose intensities are inside the interval,

(2)

The problem is the definition of these two intervals. We do this by statistical
evaluation about the gray value distribution. Then, we can easily segment the major

I x y,( ) lower upper,[ ]∈

Fig. 3. Results of the connected threshold region growing; GM mask (a), WM mask (b), CSF mask (c).

a b c



Novel statistical approach for segmentation... 129

anatomical structures by providing seeds in the appropriate locations. After binary
thresholding, we get three clusters’ masks. The results of the experiment are shown in
Fig. 3. From Figs. 3a and 3c, we notice that the GM and CSF are not being completely
segmented. This illustrates the vulnerability of the region growing methods. However,
these incomplete segmentation masks can be used as a priori ones for the following
SHEM or EM algorithm. 

3. Standard expectation maximization algorithm

The standard EM algorithm is a general algorithm for ML estimation where the data
are “incomplete” or the likelihood function involves latent variables. This algorithm
[8] considers the observed variables y as the “incomplete data”, x as the “hidden data”
and the couple (x, y) as the “complete data” characterized by the joint distribution

 where φ is a parameter vector to be estimated. The purpose is to find 
which maximizes the likelihood of observed data 

(3)

The EM algorithm starts with randomly assigning values or some prior
knowledge to all the parameters to be estimated. It then iteratively alternates between
two steps, called the expectation step (i.e., the E-step) and the maximization step
(i.e., the M-step), respectively. In the E-step, given the current settings of parameters
and our incomplete data, the expected log joint likelihood for the complete data (i.e.,
Q-function) is computed, where the expectation is taken with respect to the computed
conditional distribution of the “hidden data”. In the M-step, all the parameters are
re-estimated by maximizing the Q-function. Once we have a new generation of
parameter values, we can repeat the E-step and another M-step. This process continues
until the likelihood converges, i.e., reaching local maxima. The procedure is iterative
and repeats the two following steps until convergence: E-step – find the function

(4)

and M-step – find

(5)

with b being the iteration number. 

4. Statistical histogram based expectation maximization algorithm

As proposed in the publications (e.g., [1, 5]), we assume here that the brain image
intensity corresponding to a tissue can be well modeled as a multivariate Gaussian
distribution,

p x y φ,( ), φ̂
p y φ( )

φ̂ max p y φ( )logarg=

Q φ φ b( )
 
  E p X Y φ,( )log y φ b( ),=

φ b 1+( )
maxQ φ φ b( )

 
 arg=
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(6)

where θk = (µk, Σk ) is the vector of parameter associated with each type of tissue (or
class) k, µk is the mean vector, and Σk is the covariance (positive definite symmetric)
matrix associated with class k (  where K is the number of classes), M is
the number of channels or spectra in the image, and T denotes matrix transpose. In this
paper, we consider only a single MR image of the object; such an image is referred to
as single-channel image (i.e., M = 1). The model of (6) can then take the form:

(7)

where σk is the standard deviation of class k. The brain is a mixture of different tissues,
which are assumed mutually independent. With these assumptions, the likelihood of
the image data can be written as:

(8)

where  for k = 1, 2, ..., K, n is the total number of the image pixels
and wk is the proportion of each tissue component, where wk = 1 and 
The log-likelihood can then be expressed by:

(9)

Many numerical techniques have been proposed to perform the ML estimation
of the above class parameters, among which EM algorithm is the most commonly
used method as many authors have reported [5–8]. The EM algorithm used above is
based on the intensity of the image, which counts the parameters pixel-by-pixel, and
as a result, the convergence of the iteration is slow, with more computational time
being needed. In this section, we use the statistical histogram of the image to overcome
the problems. 

Define the non-negative integrate set G = {Lmin, Lmin + 1, ..., Lmax} as gray level,
where Lmin is the minimum gray level, Lmax is the maximum gray level, so the grayscale
is Lmax – Lmin. For image size U×V, at point (u, v), f (u, v) is the gray level with

  We use His(g) to denote the number of pixels having
gray level g,  The statistical histogram function is as follows:
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(10) 

where g = {Lmin, Lmin + 1, ..., Lmax}, δ (0) = 1 and δ (g≠0) = 0.
Let i be the intensity of the pixel with  and all the pixels of

the k-th tissue cluster have a mean intensity µk, variance  and proportional
ratio wk. The K mixed Gaussian distribution can be written as:

(11)

where wk = 1 and 

(12)

The above parameters can be obtained by equating the first partial derivatives
of Eq. (9) with respect to unknown parameters to zero. With the statistical histogram,
the SHEM algorithm can then be expressed by:

1. The E-step 

(13)

where ψik is the posterior probability that intensity i belongs to class k.
2. The M-step. The second step updates the unknown parameters with the statistical

histogram His(i )

(14)

(15)

(16)
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(17)

where b is the iteration number. The procedure of the SHEM algorithm is the following:
1. Initialize φ (0) randomly or according to some prior knowledge of where might

be the optimal parameters;
2. Iteratively improve the estimate of φ  by alternating between the E- and

M-step;
3. The iteration will stop when the number of iteration >N or the convergence is

stable.

5. Experimental results

In this section, both standard EM and SHEM algorithms are used for the segmentation
of the filtered PD-weighted MRI. The segmentation was implemented in VC++6.0
language on a PC. We attempt to segment the MRI into four clusters (GM, WM, CSF,
and BG), and apply the corresponding previous segmentation mask results to compute
the initial value of φ (0). The algorithm is terminated after the convergence has been
stable. The final results are gained by extracting the brain region from the results
of SHEM algorithm. The segmentation results are shown in Fig. 4. Compared with
the connected threshold region growing results in Figs. 3a and 3c, GM and CSF are
extracted completely and accurately, as shown in Figs. 4a and 4c. 

In the experiment, we see both EM and SHEM to have spent the same time
performing iterations to accomplish the segmentation process and get the same results;
however, the proposed SHEM algorithm consumes less time than the standard EM
algorithm. In this example, the standard EM algorithm spends 0.64 seconds in each
iteration, while the corresponding time for SHEM algorithm is nearly 0.004 seconds.
In this case, the SHEM algorithm converged approximately 160 times faster than
the EM algorithm. Because most brain MR scans consist of more than 100 2D slices,
the proposed SHEM algorithm can save significantly large amount of computational
time. Therefore, the clinical information can be provided more quickly than that of
standard EM algorithm. 

To test the performance of the proposed approach, we compared the method with
the popular FCM algorithm [13, 14] to segment the MRI. The algorithm is
implemented with the total number classes C = 4 and the weighting exponent m = 2.
After convergence, the maximum membership segmentation is applied to each pixel
of the image. The GM, WM and CSF results of FCM segmentation are shown in
Fig. 5. Compared to the corresponding results in Fig. 4, it can be seen by FCM
algorithm that CSF is over-segmented, WM is under-segmented, and GM on the top
and bottom is somewhat under-segmented while in some other place over-segmented. 

σ k
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In addition, in the experiment, we find that when FCM algorithm has been badly
initialized, it converges to wrong maximas and cannot get the four true clusters.
However, it is noted that even if the initialization quits differently, the proposed method
still can get identical results. When different groups of seed points are tested, the same
masks are always obtained except for the GM mask. The final results of GM and
CSF are a little different, while WM is identical compared to the corresponding
results of Fig. 4. The difference is computed by subtracting the GM and CSF
from the corresponding components in Fig. 4. Through subtraction, it is noted that
the difference of GM and CSF is either very small or none, which means that they are
misclassified to each other so that the total number of the brain regions is unchanged.
Series of different seed points are tested and here just a group of results are listed

Fig. 4. Results of SHEM algorithm – GM (a), WM (b), CSF (c).

a b c

Fig. 5. Results of FCM segmentation – GM (a), WM (b), CSF (c).

a b c

Fig. 6. Results with different seed points – GM mask (a), GM (b), CSF (c), difference of GM or CSF (d).

a b c d
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in Fig. 6. In this example, the result of WM is identical to that of Fig. 4b.
Figure 6a shows the different GM mask compared to Fig. 3a. Figures 6b and 6c show
the results of GM and CSF, respectively, and Fig. 6d shows the difference of GM or
CSF. The results given here do show the proposed method to be less sensitive to
initialization and robust.

Finally, to further quantitatively evaluate the performance of the algorithm, our
method is realized to segment the digital MR phantoms [12] with different noise
levels. There are many advantages of using digital phantoms rather than real image
data for validating segmentation methods. These advantages include prior knowledge
of the true tissue type and control over image parameters such as modality, slice
thickness, noise and intensity inhomogeneities. Here, in our experiments, we use
the high-resolution T1-weighted MR phantoms with slice thickness of 1 mm, no
intensity inhomogeneites and 0–9% noises. To measure the segmentation accuracy,
the overlap metric is utilized as the criteria [15]. The overlap metric is a measure for
comparing two segmentations, which is defined for a given class assignment as the sum
of the number of pixels, so that both have the class assignment in each segmentation
divided by the sum of pixels where either segmentation has the class assignment.
Larger metric means more similar results. Figure 7 gives the overlap metrics of WM
and GW. As the level of noise increases, the overlap metric of our algorithm gradually
degrades, which is because no spatial information is incorporated into the algorithm.
However, it is important to note that at 0% noise level, the overlap metrics of
both WM and GM are higher than 0.95; even at 3% noise level, the corresponding
over-metrics are still higher than 0.90. The results presented here can prove that our
method is effective and allows us to obtain correct segmentation results at low noise
level. 
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Fig. 7. Overlap metrics with different noise levels for SHEM based segmentation on T1-weighted MR
phantoms.
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6. Conclusions 
In this paper, a novel statistical approach based on an improved EM algorithm called
SHEM algorithm for segmentation of the single-channel brain MRI is proposed and
tested. After a preliminary processing, the four (GM, WM, CSF, BG) cluster masks
are extracted, which serve as a priori knowledge for the SHEM algorithm. The tissue
regions of the image are satisfactorily segmented in this way, which demonstrates
that the method is effective. We compared our results with those of standard
EM algorithm and FCM segmentation. The SHEM algorithm produces identical
results as the EM algorithm with faster convergence. The SHEM based statistical
segmentation outperformed the FCM segmentation in both the effectivity and
robustness to initialization. Future work will focus on combining the spatial context
into the algorithm in order to improve its robustness to noise and compensating for
the intensity inhomogeneities during segmentation.
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