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PREDICTION OF INDUSTRIAL POLLUTION  
BY RADIAL BASIS FUNCTION NETWORKS 

Atmospheric pollution has been receiving a significant interest for several decades since industries 
cause more and more pollution. Thanks to the development of many prediction techniques, scientists 
and industries are focusing more on pollution prediction. The aim of this work is to predict the two 
pollutant concentrations (NOx and CO) in industrial sites by a modified radial basis function (RBF) 
based neural network. The modification considered the spread parameter h of the activation function 
in the RBF network. In order to get the best network, the variations of this parameter for three cases 
were considered. In the first case, only pollutants concentrations variables were used, while in the sec-
ond one, only the meteorological variables were utilized. In the third case, pollutants’ concentrations 
were connected with meteorological variables. Based on calculation errors, the best model that ensures 
the best monitoring of pollutants concentration could be identified.  

1. INTRODUCTION  

A continuous increase in industrial pollution and environmental degradation has 
become a major concern for the international community, leading to greater attention 
on threats. Many countries have already introduced laws to limit and report emission 
from a large spectrum of commercial and industrial facilities. The prediction of air pol-
lutants has become an important task for the control and emergency management in the 
case of pollution incidents. The prediction of industrial pollution is a phenomenon that 
received a special interest for a very long time. This accelerated the development of the 
prediction methods and provided scientific data based on these techniques. The artificial 
neural networks (ANN) based methods are widely used in air quality monitoring which 
heavily relies on the local meteorological conditions and the concentrations of pollutant.  

Radial basis networks can require more neurons than standard feed forward back 
propagation networks (Fig. 1), but often they can be designed in a fraction of the time 
it takes to train standard feed forward networks. They work best when many training 
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vectors are available [1]. Binet et al. [2] presented a radial basis function (RBF) neural 
network method for estimating PM2.5 concentrations based on sparse observed inputs. 
Liu et al. [3] built an emission prediction model for compressed natural gas (CNG)/diesel 
dual fuel engine (DFE) based on RBF neural network for analyzing the effect of the main 
performance parameters on the CO, NOx emissions of DFE. Kyriaki et al. [4] used a radial 
basis function neural network system, which was classifying countries based on their 
emissions of carbon, sulfur and nitrogen oxides, and on their gross national income. 

 
Fig. 1. Schematic of an RBF network 

Bo et al. [5] proposed a method for predicting gas content based on the RBF neural 
network optimized by a genetic algorithm. Shourong et al. [6] combined the RBF neural 
network with time series on CO2 emissions to make a forecast of its emissions in China. 
Chuanbao and Fuwu [7] described an approach for replacing the engine out NOx sensor 
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with a radial basis function neural network (RBFNN) based NOx perception. Zheng and 
Shang [8] selected the parameters PM10, SO2, NO2, temperature, pressure, humidity, 
wind direction and wind speed as the influence factors, while the prediction models 
based on RBF neural network were constructed.  

The aim of this paper is to predict the NOx and CO pollutants concentration in in-
dustrial sites by a modified radial basis function network (RBF). The modification we 
considered concerns the spread parameter h of the activation function in the RBF net-
work. The variations of this parameter in three cases were considered in order to get the 
best network in each case, and then these three cases were tested until getting the best 
case. These three cases are characterized as follows: in the first case (RBF1) only pol-
lutants concentrations variables were used, while in the second one (RBF2), only the 
meteorological variables were utilized. In the third case (RBF3), pollutants concentra-
tions were combined with the meteorological variables. 

2. RBF NETWORK METHOD 

An RBF is a three-layer network, with only one hidden layer (Fig. 1). The number 
of neurons in the hidden layer is equal to the number of historical observations of pre-
dictors (successors). In fact, each neuron in the hidden layer represents a pair of histor-
ical observations of predictors/dependents. The output of each neuron is actually the 
contribution of the historical observation in estimating the real-time event [9]. 

 
Fig. 2. RBF network architecture 

Radial basis network consists of two layers (Fig. 2): a hidden radial basis layer of 
S1 neurons and an output linear layer of S2 neurons, where R is the number of elements 
in the input vector, ail is ith element of a1 where IiW1,1 is a vector consisting of the ith 
row of IW1,1. 
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The dist box in Fig. 2 accepts the input vector p and the input weight matrix IW1,1, 
and produces a vector having S1 elements. The elements are the distances between the 
input vector and vectors IiW1,1 formed from the rows of the input weight matrix [1]. 

 According to Fig. 1, the RBF uses a Gaussian performance function. The input to 
this function is the Euclidian distance between each input to the neuron and the specified 
vector of the same size of the input [10, 11]. The Gaussian function uses the following 
relation: 
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where rX  – the network input with unknown output, bX  – observed inputs in time or 
location b, and h – spread. The output of the function approaches 0 to 1, when r bX X  
approaches a large value to 0, respectively. The value of the output between those limits 
depends on h. 

The general form of calculating a dependent variable ( )rY  by predictor rX  is then 

 ( , ) Biasr r bY LWf X X   (3) 

where LW and Bias – weight matrix of connections from the hidden layer to the output 
layer and bias matrix of the output layer, respectively. When an RBF network is devel-
oped, LW and bias matrices are calculated by solving the system of equation of  

 ( , ) Biasb rT LWf X b    (4) 

where Tb is the target associated with the bth observation [12]. 
To determine the best spread parameter for interpolation of concentrations using the 

RBF network to predic NOx and CO concentrations a try-and-error approach was used. 
Various values of spread starting from 0.1 ending to 6 with 0.1 incremental steps were 
used. It should be noted that since the radial basis network acts as the exact estimator 
function, the application of different spread values within the calibration set results in 
a similar averaged error of approximately zero. Therefore, to examine the performance 
of the network in a practical manner, the approach of cross-validation is used. In this 
approach, each pair of input/output is omitted from the n observation of data set once 
and the other n – 1 pairs of data are used to estimate the omitted one. This iteration is 
repeated n times, and the averaged simulation error for all n pairs of data is considered 
as the indicator of the real performance of the network. The algorithmic steps used to 
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describe the approach applied to find out which spread (h) minimizes the average error 
of concentration estimation are shown in Fig. 3. 

 
Fig. 3. Algorithm of the suitable spread (h) 
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The coefficient of determination (R2) explains how much of the variability in the 
input data can be explained by the fact that they are related to the observed values or 
how close the points are to the line. R2 takes on values between 0 and 1, with values 
closer to 1 implying a better fit [13–15]. It is given by 
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The mean absolute error (MAE) is the average difference between predicted and 
actual data values. The MAE (Eq. 6) ranges from 0 to infinity and a perfect fit is ob-
tained when MAE = 0. 
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The mean-squared error (MSE) is one of the most commonly used measures of suc-
cess for numerical prediction. The smaller the MSE value, the better the performance 
of the model is [16–18]. Its value is computed by 
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where Pi and Oi are the predicted and observed concentrations and O  represent the 
observation mean. 

3. EXPERIMENTAL PROCEDURE 

 Site and data description. Gas Natural Liquefies (GNL) complex with a surface of 
90 ha is located in Skikda industrial area, 6 km to the East from Skikda city center. It was 
built in 1972, evolved in 1980 and renovated in 2000. Our database taken from the industrial 
zone (GL1K) relies on the daily measurements from 188 groups of data containing:  

 NOx and CO pollutant concentrations in the SKIKDA area, during the period from 
October 2015 to April 2016, 

 the meteorological variables, for the same area and period; the measured variables 
are: the speed and direction of the wind, relative humidity and temperature. The inputs 
and outputs are standardized in the interval of [0; 1] [19]. 
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Method. To monitor the air quality and the prediction of industrial pollution, the 
RBF network based method considering two pollutants was applied. Our objective is to 
forecast the concentration of NOx and CO pollutants. In this study, the best spread pa-
rameter h of the Gaussian activation function is selected by determining the min error 
of RBF model for the three cases RBF1–RBF3. The best spread (h) according to each 
case was considered to present the prediction of two pollutants (CO and NOx) and their 
prediction errors. To identify the best model, the mean squared error (MSE) and the 
mean absolute error (MAE) were calculated for each of the three phases. The method 
was implemented in Matlab (7.7 version). The method of RBF neural network was ap-
plied according to Figs. 1–3 and the data of industrial site. The models’ variables are 
given in Table 1. 

T a b l e  1

Variables of the model  

Variable Description
X1 temperature
X2 humidity
X3 wind speed
X4 direction of the wind
X5 concentration of NOx

X6 concentrations of CO

4. RESULTS AND DISCUSSION  

Figures 4–6 illustrate the changes of the minimal prediction error upon changing 
the spread h for the cases RBF1–RBF3. Table 2 shows the MAE values for these cases. 
The results show that the smallest MAE is obtained in the case of RBF3 (0.0534), while 
the best spread value hbest is equal to 5.8. Table 3 shows the best spread values at several 
intervals for the same case. Therefore, the best choice for spread value is 5.8. 

T a b l e  2

Values of hbest and MAE 
for RBF1, RBF2 and RBF3

Models hbest MAE
RBF1 6.0000 0.0853
RBF2 1.2000 0.1207
RBF3 5.8000 0.0534

Figures 7–9 illustrate the pollutants prediction and the prediction errors at hbest for 
each case (RBF1, RBF2, and RBF3), while Table 4 shows the mean and the absolute 
prediction errors at hbest. 
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Fig. 4. Prediction error in terms of MAE for various values of the spread parameter h  

for the RBF1 (using only pollutant concentrations as inputs) for h ϵ [0, 6] 

 
Fig. 5. Prediction error in terms of MAE for various values of the spread parameter h  

for the RBF2 (using only meteorological variables as inputs) for h ϵ [0, 6] 

 
Fig. 6. Prediction error in terms of MAE for various values of the spread parameter h for the RBF3  
(using pollutants concentrations combined with the meteorological variables as inputs) for h ϵ [0, 6] 
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T a b l e  3

Evolution of MAE according to spread at RBF3

Interval spread Spread best MAE
[0, 2] 0.8000 0.1128
[0, 4] 0.8000 0.1128
[0, 6] 5.8000 0.0534
[0, 8] 8.0000 0.0651

 

 

 

Fig. 7. Pollutants predictions and their errors by RBF1: 
a) CO prediction at hbest, b) CO prediction errors at hbest, 

 c) NOx prediction at hbest, d) NOx prediction errors at hbest 

 

 
Fig. 8. Pollutants predictions and their errors by RBF2: 
a) CO prediction at hbest, b) CO prediction errors at hbest,  

c) NOx prediction at hbest, d) NOx prediction errors at hbest 
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Fig. 9. Pollutants predictions and their errors by RBF3: 
a) CO prediction at hbest, b) CO prediction errors at hbest,  

c) NOx prediction at hbest, d) NOx prediction errors at hbest 

 The curves of predicted and measured CO and NOx concentrations are divergent in 
Figs. 7 and 8, while they are convergent in Fig. 9. The prediction errors for CO and NOx 
are smaller in Fig. 9 than those in Figs. 7 and 8. We can easily conclude that the RBF3 
model illustrated in Fig. 9 presents better performances than RBF1 and RBF2 models 
for prediction NOx and CO. 

T a b l e  4 

Mean squared errors and mean absolute errors for RBF1, RBF2 and RBF3 

Model 
NOx concentration [ppm] CO concentration [ppm] 
MSE MAE R2 MSE MAE R2 

RBF1 0.0014 0.0293 0.5398 0.0079 0.0695 0.2374 
RBF2 0.0011 0.0261 0.3464 9.0063.10–4 0.0209 0.9127 
RBF3 5.2243·10–4 0.0174 0.5398 6.0510·10–4 0.0180 0.9349 

 
All these results show the efficiency of the RBF3 based pollution prediction model 

and its accuracy comparing to the RBF1 and RBF2 based prediction. We can deduce 
from Table 4 that the values of the MSE and MAE for the two pollutants in the predic-
tive model RBF3 are smaller than their values in predictive models RBF1 and RBF2 
also closer to 0. The values of coefficient of determination (R2) in (RBF3) are better 
than its values in the case of the RBF1 and RBF2 also close to 1. It can be concluded 
that the minimal MSE and MAE for the two pollutants are found in RBF3. Thus, using 
pollutant concentrations combined with meteorological variables leads to a better pre-
diction. 
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5. CONCLUSION  

The aim of this paper was to forecast the NOx and CO pollutants concentrations by 
the use of the forward-forward retro propagation ANN model with a radial basis func-
tion (RBF). This particular network has a Gaussian activation function which changes 
with the variations of the spread parameter h. This change may alter the RBF network.  

The test was performed for three various networks. The modification we considered 
concerns the spread parameter h of the activation function in the RBF network. The 
variation of this parameter in three cases was considered in order to get the best network 
in each case, and then these three cases were tested until getting the best case. The results 
show that the best spread and the best prediction are obtained in the third case (RBF3). 
Thus, it can be concluded that an efficient prediction of NOx and CO concentrations and 
forecast will be performed by the use of the radial basis function neural network with 
a fixed value of the spread parameter h of 5.8, and a data set containing pollutants with 
previous concentrations combined with meteorological variables. 
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