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Abstract: The purpose of many real world applications is the prediction of rare events, and the training 
sets are then highly unbalanced. In this case, the classifiers are biased towards the correct prediction of 
the majority class and they misclassify a minority class, whereas rare events are of the greater interest. 
To handle this problem, numerous techniques were proposed that balance the data or modify the 
learning algorithms. The goal of this paper is a comparison of simple random balancing methods with 
more sophisticated resampling methods that appeared in the literature and are available in R program. 
Additionally, the authors ask whether learning on the original dataset and using a shifted threshold for 
classification is not more competitive. The authors provide a survey from the perspective of regularized 
logistic regression and random forests. The results show that combining random under-sampling with 
random forests has an advantage over other techniques while logistic regression can be competitive in 
the case of highly unbalanced data.
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1.	Introduction

In many applications of supervised classification the datasets are unbalanced. This 
means that the number of objects from one class is greatly outnumbered by other 
classes. Due to many economic applications this investigation is limited to the two-
class problem called binary classification. A typical example is bankruptcy prediction 
where there are few bankrupted enterprises compared to the sound enterprises in the 
datasets. In the Polish economy, this is from 0.6% to 4.6% of dataset cardinality, 
depending on the prediction horizon (one or two years) [Pociecha et al. 2014]. A similar 
situation takes place in a churn analysis. The number of customers who leave for the 
competitors is suspected to be a small fraction of the population. When building a model 
based on data from direct marketing campaigns, the class of customers with a positive 
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response is definitely less numerous. In some applications, e.g. credit card fraud 
detection, the minority class is hardly 0.1% of the dataset size or even less [Bolton and 
Hand 2002]. The problem is that when data is unbalanced the classifiers tend to focus 
on the accurate prediction of the majority class. The reason for this bias depends on 
the learning method. King and Zeng [2001] show in logistic regression that posterior 
probabilities of the minority class are underestimated. In turn, classification trees use 
criteria in recursive partitioning procedure that minimizes overall error regardless 
of class. For this reason, one usually obtains classifiers with a  high accuracy of 
prediction, that misclassify mainly the objects from the minority class. Note that these 
objects represent rare events whose explanation the analyst is particularly interested in. 
Suppose one has data where the minority class is 5%. Having constructed a model 
with an error of about 0.05 means that one can simply classify everything to the 
dominating class with the same effect.

The unbalanced learning problem has attracted a great deal of interest recently. 
In general, solutions for unbalanced data can be summarized in two approaches: 
modifications at the level of the learning algorithm, or at the data level. The algorithmic 
changes include cost-sensitive learning and shifting a  threshold for posterior 
probabilities. The changes at data level include resampling and feature selection. 
Note that resampling usually works as a pre-processing step, but in ensemble learning 
it can be a  part of the learning algorithm. The study of performance of different 
resampling methods is given e.g. in [Loyola-González et al. 2016]. In order to 
increase the number of observations from the minority class, Lee [2000] introduced 
some normal noise to the training set, whereas Chawla et al. [2002] used a distance 
based algorithm for generating new, artificial objects. Kumar et al. [2014] supported 
under-sampling with the use of cluster analysis. A comprehensive comparative study 
can be found in the work of López et al. [2012]. Providing a  complete review of 
literature falls beyond the scope of this paper. An overview of the existing solutions 
with a wide reference can be found in [Chawla et al. 2004; Haixiang et al. 2017; 
Longadge et al. 2013; Weiss 2004]. Another view which emphasises ensemble 
learning was given by Galar et al. [2011]. A separate problem related to unbalanced 
data is model assessment. An extensive investigation on the estimation of model 
quality is discussed in [Japkowicz, Shah 2011].

This article focuses on the effectiveness of resampling methods, which can be 
divided into two groups: random or “intelligent”, i.e. those that use the information 
contained in the data. This second group is represented by sophisticated methods that 
introduce additional computational cost to the learning process. The objective is to verify 
the advantages from such resampling. To answer the question whether resampling  
is beneficial at all, the authors compare the obtained results with a classification based 
on the shifted posterior probability threshold. In this second approach a classifier 
is estimated using the whole unbalanced dataset. Since a family of classifiers may 
strongly affect the results, this study is limited to the random forests [Breiman 2001] 
and logistic regression model. This choice is not accidental as random forests were 
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successfully applied in many research areas. This classifier is valued for accuracy of 
prediction, dealing with various types of variables, robustness on outliers, and automatic 
feature selection, however the disadvantage of ensembles is the loss of interpretability. 
For this reason the second classifier taken into consideration is logistic regression.  
The authors estimate model parameters using the classic criterion of maximum 
likelihood as well as including the regularization term. Although extensive research 
on logistic regression for unbalanced data has been carried out, as far as it is known, 
there is no such study for its regularised version. The authors found it especially 
interesting because of embedded feature selection. Note that many similar studies 
have been reported in the literature but the majority of them consider single trees 
and classical logistic regression, or neural networks and support vector machines. 
Moreover, the results of these works are sometimes contradictory.

The rest of this paper is organized as follows. Section 2 describes simple 
measures of model quality that are used in the case of unbalanced data. There are 
also introduced two types of classifiers that are the focus in the further research. 
Section 3 discusses balancing techniques. The setup and the results of the research 
are presented in Section 4, and Section 5 includes the concluding remarks.

2.	Classifier assessment in the case of unbalanced data

Assume that a set of multidimensional observations {( , ): {1, ..., }}iy i N∈ix  is given, 
where vectors xi consist of measurements of predictors X = (X1, ..., Xp), and yi are 
one of two possible class labels, which will be denoted by {0,1}. Let us establish that  
1 encodes a minority class. The objective is to model dependency y = f(x). Function f 
is called the classification rule or classifier. As a dataset is usually a random sample, 
one obtains the estimate ˆ ˆˆ ( , )y f= x θ   where θ is a vector of model parameters. Then, 
a classifier is used for the prediction of class for new objects.

This paper considers two types of classifiers. The first one is random forest 
[Breiman 2001], which represents an ensemble approach to statistical learning. 
The trees are constructed without pruning and only a  small number of randomly 
picked variables is considered within the nodes. Next the responses of the trees are 
combined in the final output. The only hyperparameters are the number of trees and 
the number of picked variables, which are suggested in the source work [Breiman 
2001]. This makes this method convenient even for non-advanced data analysts. Note 
that random forests scale well in high-dimensional domains because only randomly 
selected features within any node are considered for making a split. Unfortunately, 
this model works as a  black box, so it is not interpretable. The second classifier 
considered is the logistic regression model; this model is especially popular because 
of its interpretative possibilities. The parameters of the logit model:
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can be estimated in the classic way, i.e. using the maximum likelihood method, or 
by regularization. In this second approach the penalty component P(b) is included to 
the estimation criterion:

ˆ arg min( 2ln ( ) ( )),L Pl= − + ⋅
b

b b b (2)

where L(b) is a likelihood function. The penalty causes the shrinking of coefficients 
to zero. In extreme cases they can be equal to zero, what is tantamount with feature 
selection. One can consider the penalty in the form of elastic net:
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1
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p

j j
j

P b bα α α
=

= − +∑b , (3)

which was proposed by Zou and Hastie [2005]. It combines the ridge regression 
and lasso. Parameter λ decides the amount of shrinking and it is usually determined 
adaptively. Usually several models are estimated for different values of λ and finally 
one is chosen which minimizes the evaluation function, e.g. information criterion. 

An important stage of modelling is an assessment of classifier usefulness. The 
most popular and frequently used measure of model quality is classification accuracy, 
i.e. the fraction of correctly classified objects. As previously indicated, this is not 
a proper measure in the case of unbalanced data. Therefore, several measures were 
proposed that take into account the type of incorrect classification [Fawcett 2006]. 
Table 1 consists of the numbers of correct and incorrect classifications with regard to 
the classes. It also presents the notations commonly used in the literature. Note that the 
minority class, which is usually the class of interest, is called a positive class while the 
majority class is a negative. 

Table 1. Confusion matrix. Minority class is coded by 1

Observed class
Predicted class

0 1
0 TN FP
1 FN TP

TN (true negative) 	 TP (true positive)
FP (false positive)	 FN (false negative)

Source: own work.

The simplest evaluation measure which focuses on rare events is the accuracy, 
calculated for the minority class only: 

TPTPR
TP FN

=
+

. (4)
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This is called True Positive Rate or sensitivity. In turn, the accuracy of 
classification of the majority class:

TNTNR
TN FP

=
+

 (5)

is called specificity. Probably the most popular measure which takes into account 
both types of accuracies is the so-called Area Under the Curve and it is simply the 
arithmetic mean of sensitivity and specificity:

( )0,5AUC TPR TNR= ⋅ + . (6)

The term AUC derives from a geometric interpretation in the ROC space [Misztal 
2014]. This measure reflects a compromise between the correct classification of both 
classes. Naturally, in the model selection stage one can consider sensitivity as well as 
the AUC measure to choose the final classifier. Note that as a model is usually used 
for the prediction of future events, the quality measures should be estimated on unseen 
data, i.e. on test samples independent of the learning stage [Hastie et al. 2009].

3.	Data balancing 

Balancing is a  pre-processing step which is oriented on the preparation of the 
dataset for a learning algorithm. The idea is that the classes would be approximately 
equinumerous in the input data, then the classifiers would not be focused on the 
majority class. 

The simplest and algorithmically the fastest method of data balancing is random 
resampling, which can be achieved in three ways. Under-sampling leaves all objects 
from the minority class and it randomly eliminates the objects from the majority class. 
The basic drawback of this approach, indicated in the literature, is that important 
objects can be potentially removed. Moreover, in the case of small datasets the size 
of the obtained input training set can be relatively small compared to the number 
of predictors, which induces a problem with the accuracy of estimation of logistic 
regression parameters. In an extreme scenario this can be even N < p. In turn, in the 
case of large datasets, under-sampling accelerates the run of the learning algorithm. 
The second way of random data balancing is over-sampling, which replicates the 
objects from the minority class. There is no lost information in this approach, but it is 
commonly believed that the constructed model may then overfit. As an example, let us 
take a classification tree. The region defined by the rule (conjunction of the conditions 
on the path from the root to the leaf) may cover a great number of positive objects, 
that are in fact exact copies of one. In the case of a large dataset, a further increase of 
size by over-sampling may substantially slow down a learning algorithm. The partial 
response to the drawbacks of the discussed methods is their combination. The mix 
of under and over-sampling provides the opportunity of setting the input training 
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set size depending on preferences. Unfortunately, despite many empirical studies 
reported in the literature (see e.g. [Estabrooks et al. 2004]), there are no clear results 
on the optimal rate of under and over-sampling in a mixed approach. 

The additional possibilities of using random resampling are given by ensemble 
learning. The typical drawback of under-sampling, i.e. the loss of important 
information, is overcome in a  natural way because a  resampling can be repeated 
for each base model. The implementation of this approach is available directly from 
standard random forest procedure in R. The method is known as balanced random 
forest [Chen et al. 2004].

Due to the mentioned drawbacks of random resampling, several more advanced 
techniques have been proposed. Using information from a dataset, they create new 
synthetic objects for the minority class, or discard some of the representatives from 
the majority class. Thus, they are the information-based versions of over or under-
sampling. Generally, these methods use distances between objects or distribution 
estimation in the classes. 

The SMOTE algorithm [Chawla et al. 2002] is probably the most popular 
among these which utilise the nearest neighbours approach. The idea is to create 
synthetic objects in the neighbourhood of points from the minority class. Namely, 
for each observation x from a minority class, its k nearest neighbors from this class 
are determined and then one of them NN*(x) is picked randomly. Next, the coordinate 
differences between x and NN*(x) are calculated. These differences are multiplied 
by the random numbers between 0 and 1. The new object is created by adding such 
a  vector of randomly deformed differences to the original vector x. Geometrically 
this looks like a shifting of point x towards nearest neighbor NN*(x). The number k 
as well as the number of picked neighbors NN*(x) are parameters of the algorithm. 
The first decides, how much the synthetic observations may be dispersed around the 
original ones. The second is set according to the required amount of over-sampling. 
For example, if the size of the minority class is to increase by 300%, only three of the 
nearest neighbors are picked for each positive object x. 

The ROSE algorithm [Menardi, Torelli 2014] reflects a  distribution-based 
approach. It generates a new set of synthetic objects in which the classes are equally 
represented. The size of the new training set is a parameter of the method, thus under-
sampling, over-sampling as well as the mixed approach is possible. The algorithm is 
partially random. It starts from picking an object (xi ,yi) from the original training set 
with the same class probabilities. Then new observation x is generated according to 
density function ( )if Y y=x  which is approximated by the kernel estimate:

1

1ˆ ( ) ( ),
j

j

n

i H i
i j

f Y y K x x
n=

= = −∑x  (7)

where j indicates a class, nj is its size and Hj is a matrix of scale parameters in the 
chosen class. Menardi and Torelli [2014] applied the Gaussian kernel.
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4.	Empirical study 

The empirical comparison was conducted for two popular and in some sense 
complementary classifiers. Random forests [Breiman 2001] represent the modern 
tool with a high accuracy of prediction, which acts like a black box. On the other 
hand, logistic regression represents an interpretable model with a  fast estimation 
process, and is generally sufficient when the class structure is not very complicated. 
To obtain results free of influence of irrelevant variables, therefore more comparable 
with random forests, the study also investigated regularized logistic regression 
utilising elastic net penalty eq. (3). The setups in this research are as follow. Random 
forests consist of 200 trees which are built without pruning. The number of variables 
randomly picked in the nodes is approximately a  square root of p (the number 
of predictors), using R package randomForest for this purpose. The logistic 
regression model is fitted with the use of a coordinate-descent algorithm [Friedman 
et al. 2008] implemented in R package glmnet, which is designed for classic as 
well as regularized estimation. The alpha parameter in eq. (3) was set as 0.9 to 
assign more weight to the term with absolute value, which decides about the feature-
selection effect. Penalty parameter λ was determined according to the minimal value 
of the Bayesian information criterion. The notations of these classifiers used in the 
tables with results are: RF (for random forests), LR (for logistic regression) and 
RLR (for regularized logistic regression). For resampling methods the study used 
R packages ROSE and smotefamily. In the random mixed approach the authors 
discarded half of the majority class, and then replicated the minority class to achieve 
the equinumerosity. 

Table 2. Datasets summary

Datasets Number of objects Number of predictors Fraction
 of the minority class

Advertisement 3279 1557 0.140

Bank-marketing 4521 16 0.115

Churn 5000 18 0.141

Polish bankruptcy 4769 64 0.025

Seismic bumps 2584 18 0.066

Source: UCI Machine Learning Repository.

The investigation was carried out on five real datasets from the UCI repository 
[Dua, Graff 2019]. Each of them has a binary dependent variable. Their characteristics 
are shown in Table 2. For logistic regression, the qualitative variables were 
transformed to dummy variables. For a comparison of random forests and logistic 
regression, one had to eliminate the problem of missing data. Due to their small 
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amount it was decided on the inputation by means in advertisement dataset. In turn, in 
Polish bankruptcy data, where there were a lot of NAs, such rows were deleted. The 
datasets were split on training sets (two-thirds of the original size) and test sets (one-
third of the original size).

Table 3 presents the results for five resampling methods. For the first three 
datasets, the best results for RF are better than the best results for LR and RLR.  
In the next two datasets, where the fraction of the minority class is only 2.5% and 
6.6%, logistic regression can be competitive. Note that in the case of logistic regression, 
it is not possible to indicate the most favourable resampling method, while random 
forests almost always achieve their best results after under-sampling. The only 
exception in RF is Advertisement dataset, where under-sampling leads to the second 
best result. However even here, the second result is better than all those obtained 
in logistic regressions. Notably simple random resampling was not outperformed 
by more sophisticated methods. Only the application of SMOTE with regularized 
logistic regression yielded the best AUC and TPR two times (for advertisement and 
Polish bankruptcy), however these results were not as high as in random forests. 
Regularization brought an improvement in relation to classical logistic regression 
in three datasets: advertisement, bank marketing and Polish bankruptcy. Note that 
the especially large difference in AUC and TPR was for advertisement dataset. This 
is a dataset for text categorization where all except three variables are binary with 
a  small fraction of ones. These 1554 variables indicate the presence of words or 
phrases in the text documents. The application of SMOTE and RLR left only 54 of 
these variables. Remember that the study still reports the best results from all the 
resampling methods, because having conducted this experiment there are no explicit 
recommendations as to which balancing method is best for logistic regression.

Table 3. Comparison of resampling methods

Datasets and resampling LR RLR RF
Advertisement AUC TPR AUC TPR AUC TPR

Under-sampling 0.749 0.715 0.883 0.795 0.937 0.901
Over-sampling 0.850 0.735 0.915 0.848 0.946 0.914
Mixed 0.763 0.682 0.894 0.821 0.940 0.914
ROSE 0.739 0.927 0.887 0.801 0.544 1
SMOTE 0.846 0.748 0.927 0.874 0.934 0.881

Bank marketing AUC TPR AUC TPR AUC TPR
Under-sampling 0.790 0.754 0.788 0.714 0.843 0.903
Over-sampling 0.804 0.760 0.818 0.789 0.698 0.451
Mixed 0.809 0.777 0.808 0.771 0.767 0.646
ROSE 0.806 0.777 0.809 0.789 0.790 0.720
SMOTE 0.798 0.731 0.788 0.714 0.622 0.269
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Churn AUC TPR AUC TPR AUC TPR
Under-sampling 0.796 0.830 0.785 0.808 0.883 0.848
Over-sampling 0.793 0.826 0.796 0.830 0.869 0.746
Mixed 0.776 0.781 0.772 0.781 0.880 0.786
ROSE 0.775 0.790 0.781 0.808 0.852 0.786
SMOTE 0.779 0.754 0.773 0.746 0.880 0.772

Polish bankruptcy AUC TPR AUC TPR AUC TPR
Under-sampling 0.691 0.737 0.709 0.605 0.770 0.842
Over-sampling 0.756 0.868 0.778 0.763 0.524 0.053
Mixed 0.784 0.763 0.781 0.763 0.610 0.237
ROSE 0.761 0.842 0.756 0.789 0.503 1
SMOTE 0.766 0.895 0.819 0.816 0.605 0.237

Seismic bumps AUC TPR AUC TPR AUC TPR
Under-sampling 0.738 0.742 0.744 0.677 0.739 0.758
Over-sampling 0.741 0.726 0.750 0.742 0.536 0.097
Mixed 0.761 0.758 0.755 0.742 0.601 0.258
ROSE 0.746 0.726 0.738 0.742 0.719 0.548
SMOTE 0.743 0.726 0.743 0.726 0.549 0.129

Source: own calculations.

At this stage of research one can ask the question whether to balance a data or 
not? Under-sampling is evidently the most beneficial technique for random forests.  
As this decreases the size of the training set, and therefore potentially discards 
important information, the paper compares this method with learning on a  full 
dataset. In this case the threshold was set for posterior probabilities equal to the 
fraction of the minority class in a training set. It can be seen that the results (Table 4) 
are second best or even best for random forest. However, in the case of logistic 
regression, it only occasionally improves the AUC or TPR. 

Table 4. Results obtained using original datasets and shifting a classification threshold

Datasets
LR RLR RF

AUC TPR AUC TPR AUC TPR
Advertisement 0.480 0.252 0.906 0.848 0.949 0.940
Bank marketing 0.802 0.760 0.790 0.737 0.841 0.903
Churn 0.785 0.817 0.793 0.835 0.882 0.866
Polish bankruptcy 0.810 0.842 0.710 0.763 0.731 0.763
Seismic bumps 0.731 0.726 0.749 0.758 0.710 0.712

Source: own calculations.
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Table 5. Balanced random forest vs. standard version

Datasets
Under-sampling Threshold

RF BRF RF
AUC TPR AUC TPR AUC TPR

Advertisement 0.937 0.901 0.943 0.921 0.949 0.940
Bank marketing 0.843 0.903 0.834 0.863 0.841 0.903
Churn 0.883 0.848 0.898 0.857 0.882 0.866
Polish bankruptcy 0.739 0.758 0.790 0.868 0.731 0.763
Seismic bumps 0.739 0.758 0.734 0.774 0.710 0.712

Source: own calculations.

Up to now the authors were combining random forests with data balancing 
in a  pre-processing step, i.e. resampling was performed outside of the learning 
algorithm, thus, not using entirely the possibilities of ensemble learning. In balanced 
random forest BRF [Chen et al. 2004], under-sampling is performed for each base 
model. Usually this gives a  slight improvement in the results of AUC and TPR 
(Table 5), but the differences are unexpectedly low except Polish bankruptcy data, 
where AUC increased by about 0.05, and TPR by about 0.11. Yet, the thresholding of 
posterior probabilities can be even competitive when a fraction of the minority class is 
more than 10%. In the case of small fractions (Polish bankruptcy and seismic bumps 
datasets), resampling was more advantageous.

5.	Conclusion

Resampling methods are the most popular remedy for the class unbalance problem 
[Haixiang et al. 2017]. In the case of random forests, random under-sampling returned 
the best results unambiguously. This connection was usually substantially superior to 
any over-sampling method, random or information based. One can say that random 
forests do not tolerate artificially replicated information. The predominance of under-
-sampling, a  technique that reduces the size of the training set, was a  somewhat 
surprising result, because the trees require a large sample. In fact, it is beneficial in 
the case of processing large datasets. However, a high unbalance or low size of the 
original dataset in connection with under-sampling may lead to very small training 
sets. This could be problematic and the authors set it as a direction for future work. 
Moreover, logistic regression may be competitive when a  fraction of the minority 
class is low. Unfortunately, none of the investigated resampling method has obtained 
superiority for this model. Thus, the choice of resampling would have to be performed 
with the use of a validation set. This would induce an additional split of the original 
data and would decrease the size of the training sample. It is noteworthy that learning 
on whole datasets and classification according to the shifted threshold frequently 
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returns at least comparable results when the fraction of the minority class is not too 
low. Thus, for smaller datasets one can run random forests without under-resampling 
and shift a classification threshold. In the case of regularized logistic regression, this 
approach could be a  solution to the problem with a choice of resampling method, 
unfortunately encountering a problem at the lambda selection stage, bearing in mind 
that lambda is chosen so as to minimize the BIC criterion. The component of BIC is 
deviance, which reflects a goodness of fit. When data is unbalanced, a deviance does 
not distinguish the kind of incorrect classifications. Package glmnet in R implements 
cross-validation where deviance is also minimized. Therefore the selection of lambda 
so that it maximizes AUC is a second direction of the authors future work.
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OCENA METOD REPRÓBKOWANIA  
W PROBLEMIE ZBIORÓW NIEZBILANSOWANYCH

Streszczenie: Celem wielu praktycznych zastosowań modeli dyskryminacyjnych jest przewidywanie 
zdarzeń rzadkich. Zbiory uczące są wówczas niezbilansowane. W tym przypadku klasyfikatory mają 
tendencję do poprawnego klasyfikowania obiektów klasy większościowej i jednocześnie błędnie kla-
syfikują wiele obiektów klasy mniejszościowej, która jest przedmiotem szczególnego zainteresowania. 
W celu rozwiązania tego problemu zaproponowano wiele technik, które bilansują dane lub modyfikują 
algorytmy uczące. Celem artykułu jest porównanie prostych, losowych metod bilansowania z bardziej 
wyrafinowanymi, które pojawiły się w literaturze. Dodatkowo postawiono pytanie, czy konkurencyj-
nym podejściem nie jest budowa modelu na oryginalnym zbiorze danych i przesunięcie progu klasyfi-
kacji. Badanie przedstawiono z perspektywy regularyzowanej regresji logistycznej i lasów losowych. 
Wyniki pokazują, że kombinacja metody under-sampling z lasami losowymi wykazuje przewagę nad 
innymi technikami, podczas gdy regresja logistyczna może być konkurencyjna w przypadku silnego 
niezbilansowania. 

Słowa kluczowe: klasy niezbilansowane, repróbkowanie, regularyzowana regresja logistyczna, lasy 
losowe.
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