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Abstract: The problem of small area prediction is considered under a Linear Mixed Model. The article 

presents a proposal of an empirical best linear unbiased predictor under a model with two correlated 

random effects. The main aim of the simulation analyses is a study of an influence of the occurrence of 

a correlation between random effects on properties of the predictor. In the article, an increase of the 

accuracy due to the correlation between random effects and an influence of model misspecification in 

cases of the lack of correlation between random effects are analyzed. The problem of the estimation of 

the Mean Squared Error of the proposed predictor is also considered. The Monte Carlo simulation 

analyses and the application were prepared in R language. 
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1. Introduction 

The problem of the prediction of small area total is considered. The main aim of the 

analyses in survey sampling was to propose an Empirical Best Linear Unbiased 

Predictor under the model with two correlated random effects, therefore the model 

approach problem was discussed. 

In the simulation analyses the influence of the occurrence of a correlation between 

random effects on properties of the predictor was studies. The analyses concentrate on 

the increase of the accuracy due to the correlation between random effects and the 

influence of model misspecification in cases of the lack of correlation between random 

effects. In its application, the problem of the estimation of the Mean Squared Error of 

the proposed predictor was also considered. 
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In Sections 2 and 3 the General Linear Mixed Model with a special case regarding 

two correlated random effects is presented. Section 4 concerns the Empirical Best 

Linear Unbiased Predictor (EBLUP). In the next section, the problem of the estimation 

of the Mean Squared Error of the proposed predictor and its application are considered. 

Section 6 presents the results of the simulation study. In these analyses the proposal of 

EBLUP for the linear mixed model with two correlated random effects was considered. 

The last section is the conclusion of the application and simulation study. 

2. General Linear Mixed Model 

The analysed population Ω of size 𝑁 is divided into 𝐷 domains Ω𝑑, each of size 𝑁𝑑, 

where 𝑑 =  1, . . . , 𝐷 and 𝑁 = ∑ 𝑁𝑑
𝐷
𝑑=1  (Ω = ⋃ Ω𝑑

𝐷
𝑑=1 ). Additionally, the sample 𝑠 

of size 𝑛 and the sample in d-th domain of size 𝑛𝑑 denoted by 𝑠𝑑 are considered. The 

model which belongs to the class of the Linear Mixed Models (LMM) is analysed. The 

General Linear Mixed Model is given by:  

 

{
 
 

 
 
𝐘 = 𝐗𝛃 + 𝐙𝐯 + 𝐞

E𝜉(𝐯) = 𝟎

E𝜉(𝐞) = 𝟎

D2(𝐯) = 𝐆(𝛅)

D2(𝐞) = 𝐑(𝛅)

 , (1) 

where: 𝐘 – the random vector of values of the dependent variable, its distribution will 

be denoted by 𝜉, 𝐗, 𝐙 – known matrices of auxiliary variables, 𝛃 – the vector 

of unknown parameters. 

Furthermore, 𝐯 is a vector of random effects and 𝐞 – vector of stochastic 

disturbances with variance-covariance matrices 𝐆 and 𝐑, respectively. Both matrices 

depend on a vector of unknown parameters 𝛅 called variance components. The expected 

value relative to the 𝜉-distribution is denoted by 𝐸𝜉(. ) (cf. Jiang, 2007, pp. 1-2; Rao 

and Molina, 2015, p. 98). The variance-covariance matrix of 𝐘 under (1) is given by: 

 𝐕(𝛅) = 𝐙𝐆(𝛅)𝐙 + 𝐑(𝛅). (2) 

The above model (1) can be also presented in the following form: 

 𝐘 = 𝐗𝛃 + 𝐙𝟏𝐯𝟏 + 𝐙𝟐𝐯𝟐+⋯+ 𝐙𝒉𝐯𝒉 + 𝐞, (3) 

where: 

 D2 [

𝐯𝟏
𝐯𝟐
⋮
𝐯𝒉

] = [

𝐆𝟏𝟏 𝐆𝟏𝟐 ⋯ 𝐆𝟏𝒉
𝐆𝟐𝟏 𝐆𝟐𝟐 ⋯ 𝐆𝟐𝒉
⋯ ⋯ ⋯ ⋯
𝐆𝒉𝟏 ⋯ ⋯ 𝐆𝒉𝒉

]. (4) 

It should be noted that for 𝑖 ≠ 𝑗 it is possible that 𝐆𝒊𝒋 ≠ 𝟎 and matrix 𝐑 can be 

written as: 𝐑(𝛅) = 𝜎𝑒
2𝑑𝑖𝑎𝑔(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑁. 
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3. Some special cases of the Linear Mixed Model  

In this section some special cases of the Linear Mixed Model are presented. The first 

group are models with one random effect. In this group two models can be analyzed: 

the nested error regression model and the model with a random slope. The first model  

was considered by Battese, Harter and Fuller (1988) and has the following form: 

 𝑌𝑖𝑑 = 𝛽1𝑥𝑖𝑑 + 𝛽0 + 𝑣𝑑 + 𝑒𝑖𝑑. (5) 

Matrix 𝐙 for this model can be written as: 

 𝐙 =

[
 
 
 
𝟏𝐍𝟏 𝟎 ⋯ 𝟎

𝟎 𝟏𝐍𝟐 ⋯ ⋯
⋯ ⋯ ⋯ ⋯
𝟎 ⋯ ⋯ 𝟏𝐍𝐃]

 
 
 

N×D

. (6) 

Variance-covariance matrices for random effects and stochastic disturbance in this 

case have the following forms: 

 𝐆(𝛅) = 𝜎𝑣𝑑
2 𝐈D×D, (7) 

 𝐑(𝛅) = 𝜎𝑒
2diag(𝑣𝑖) for 1 ≤ i ≤ N, (8) 

so matrix 𝐕 according to formula (2) can be written as: 

 𝐕(𝛅) = diag1≤d≤D𝐕𝐝 = diag1≤d≤D(𝜎𝑣𝑑
2 𝟏𝑵𝒅𝟏𝑵𝒅

𝑻 + 𝜎𝑒
2𝑰𝑵𝒅×𝑵𝒅). (9) 

The same form of matrix 𝐑 is assumed for all of the presented models. 

The model with random slope analysed by Dempster, Rubin and Tsutakawa (1981) 

is given by: 

 𝑌𝑖𝑑 = (𝛽1 + 𝑣𝑑)𝑥𝑖𝑑 + 𝛽0 + 𝑒𝑖𝑑. (10) 

Matrix 𝐙 in this case has the following form: 

 𝐙 = [

𝐱𝟏 𝟎 ⋯ 𝟎
𝟎 𝐱𝟐 ⋯ ⋯
⋯ ⋯ ⋯ ⋯
𝟎 ⋯ ⋯ 𝐱𝐃

]

N×D

, (11) 

where: 𝐱𝟏, 𝐱𝟐, … , 𝐱𝑫 are the vectors of auxiliary variable for domains. Variance- 

-covariance matrices 𝐆 and 𝐑 have the same form as for the first model but 

matrix 𝐕 is given by: 

 𝐕(𝛅) = diag1≤d≤D𝐕𝐝 = diag1≤d≤D(𝜎𝑣𝑑
2 𝒙𝒅𝒙𝒅

𝑻 + 𝜎𝑒
2𝑰𝑵𝒅×𝑵𝒅). (12) 

Furthermore, models with two random effects – uncorrelated or correlated – are 

discussed. It is assumed that both of the random effects are specific for domains. The 

model with two uncorrelated random effects has the following form: 
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 𝑌𝑖𝑑 = (𝛽1 + 𝑣2𝑑)𝑥𝑖𝑑 + 𝛽0+𝑣1𝑑 + 𝑒𝑖𝑑. (13) 

The matrix of auxiliary variables 𝐙 in this case has a more complex form than for 

the model with only one random effect: 

 𝐙 =

[
 
 
 
𝟏𝑵𝟏 𝐱𝟏 𝟎 𝟎 ⋯ 𝟎 𝟎

𝟎 𝟎 𝟏𝑵𝟐 𝐱𝟐 ⋯ 𝟎 𝟎
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝟎 𝟎 𝟎 𝟎 ⋯ 𝟏𝑵𝑫 𝐱𝑫]

 
 
 

𝑵×𝟐𝑫

. (14) 

The variance-covariance matrix of random effects in this case is given by: 

 𝐆(𝛅) = [

𝐆𝟏 𝟎 ⋯ 𝟎
𝟎 𝐆𝟐 ⋯ ⋯
⋯ ⋯ ⋯ ⋯
𝟎 ⋯ ⋯ 𝐆𝑫

]

𝟐𝑫×𝟐𝑫

, (15) 

where each of blocks has the following form: 𝐆𝑫 = [
𝜎𝑣1𝑑
2 0

0 𝜎𝑣2𝑑
2 ]. By inserting this 

matrices into formula (2), the following covariance matrix of 𝐘 is obtained: 

 𝐕(𝛅) = 𝑑𝑖𝑎𝑔1≤𝑑≤𝐷𝐕𝒅 =  

 = 𝑑𝑖𝑎𝑔1≤𝑑≤𝐷(𝜎𝑣𝑑
2 𝟏𝑁𝑑𝟏𝑛𝑑

𝑻 + 𝜎𝑣2𝑑
2 𝐱𝑑𝐱𝑑

𝑻 + 𝜎𝑒
2𝐈𝑁𝑑×𝑁𝑑).  (16) 

It should be noted that in this case matrix 𝐕 is the sum of matrices (9) and (12). If 

correlation between random effects is assumed, the model is given by: 

 𝑌𝑖𝑑 = (𝛽1 + 𝑣2𝑑
∗ )𝑥𝑖𝑑 + 𝛽0 + 𝑣1𝑑

∗ + 𝑒𝑖𝑑. (17) 

The variance-covariance matrix, similarly to the previous model, is block-diagonal 

but the blocks have the following form: 

 𝐆𝐝 = [
𝜎𝑣1𝑑

∗
2 𝜌𝜎𝑣1𝑑

∗ 𝜎𝑣2𝑑
∗

𝜌𝜎𝑣1𝑑
∗ 𝜎𝑣2𝑑

∗ 𝜎𝑣2𝑑
∗
2 ].  (18) 

The variance-covariance matrix of 𝐕 has a fairly similar form compared to model 

(13) but an additional, third element with parameter 𝜌 was observed: 

𝐕(𝛅) = 𝑑𝑖𝑎𝑔1≤𝑑≤𝐷𝐕𝒅 = 𝑑𝑖𝑎𝑔1≤𝑑≤𝐷(𝜎𝑣𝑑
2 𝟏𝑁𝑑𝟏𝑁𝑑

𝑻 + 𝜎𝑣2𝑑
2 𝐱𝑑𝐱𝑑

𝑻 + 

 +ρσ𝑣1d
∗ σ𝑣2d

∗ (𝟏𝐍𝐝𝐱𝐝
𝐓+𝐱𝐝𝟏𝐍𝐝

𝐓 ) + σe
2𝐈𝐍𝐝×𝐍𝐝). (19) 

Figure 1 and Figure 2 present slopes and intercepts for models with two 

uncorrelated and correlated random effects, respectively. Each line corresponds to one 

domain. 
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Fig. 1. Slopes and intercepts for a model with uncorrelated random effects 

Source: own elaboration. 

A clear difference can be seen in the line layout in these two cases. In Figure 2 the 

signs of the slopes for all the lines are the same, and most of the lines intersect at one 

point. 

 

Fig. 2. Slopes and intercepts for a model with correlated random effects 

Source: own elaboration. 
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Figure 3 and Figure 4 show a graphic presentation of matrix G for the considered 

two models. 

 

Fig. 3. Matrix G for a model with two uncorrelated random effects 

Source: own elaboration. 

On these figures each of the squares represents the value of one element in the 

matrix. Non-zero matrix elements are marked in grey. The darker colour of the square 

means a higher value. In Figure 4 it should be noted that covariance within domains is 

non-zero. 

 

Fig. 4. Matrix G for a model with two correlated random effects 

Source: own elaboration. 
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Obviously, more complex models can be also considered – LMMs with three or 

more random effects and with more than two correlated random effects. 

It should be noted that LMMs with correlated random effects found their 

application in e.g.: the estimation of plasma concentration of a drug by a nonlinear 

mixed effects model (Dumont, Chenel, and Mentre, 2014), analyses of health care 

costs at the end of life (Menec et al., 2004) and analyses of the bias and the precision 

of the estimates for pharmacokinetics (PK) and pharmacodynamics (PD) 

(Ogungbenro, et al., 2008). These models may find their application also in other areas, 

including economics. 

4. Empirical Best Linear Unbiased Predictor 

The problem of the prediction of some characteristic 𝜃 = 𝛾𝑇𝐘 was also considered. 

Additionally the following decomposition of vector Y was assumed: 

 𝐘 = [𝐘𝐬
𝐓 𝐘𝐫

𝐓]𝐓, (20) 

where 𝐘𝒔
𝑻 is the vector of size 𝑛, for elements which were drawn to sample 𝑠, the vector 

of size N𝑟 = 𝑁 –  𝑛, 𝐘𝒓
𝑻 corresponds to elements not drawn to the sample. Similarly, 

vector 𝜸 can be decomposed as follows: 

 𝛄 = [𝛄𝐬
𝐓 𝛄𝐫

𝐓]𝐓,  (21) 

where for the total value in the 𝑑-th domain the 𝑘-th element of the vector 𝜸 equals 1 

for 𝑘 ∈ Ω𝑑 and 0 otherwise. The variance-covariance matrix of 𝐘 is given by: 

 𝐕(𝛅) = D2(𝐘) = D2 [
𝐘𝐬
𝐘𝐫
] = [

𝐕𝐬𝐬(𝛅) 𝐕𝐬𝐫(𝛅)

𝐕𝐫𝐬(𝛅) 𝐕𝐫𝐫(𝛅)
]. (22) 

According to the Royall (1976) theorem, the Best Linear Unbiased Predictor is 

given by: 

 θ̂BLUP = 𝛄𝐬
𝐓𝐘𝐬 + 𝛄𝐫

𝐓 [𝐗𝐫�̂�(𝛅) + 𝐕𝐫𝐬(𝛅)𝐕𝐬𝐬
−𝟏(𝛅) (𝐘𝐬 − 𝐗𝐬�̂�(𝛅))]. (23) 

If the diagonal form of matrix 𝐑(𝜹) is assumed, predictor (23) simplifies to (cf. 

Żądło, 2017): 

 θ̂BLUP = 𝛄𝐬
𝐓𝐘𝐬 + 𝛄𝐫

𝐓𝐗𝐫�̂�(𝛅) + 𝛄𝐫
𝐓𝐙𝐫�̂�,  (24) 

where �̂� and �̂� are vectors of estimates of fixed and random effects, respectively. 

Additionally, if 𝜹 is replaced by its estimator, a two stage predictor called EBLUP was 

obtained. In the Monte Carlo simulation analyses and application of the proposal of 

EBLUP for model (17) were considered. 
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5. The MSE of the EBLUP and its estimators – application 

In the following application the problem of estimation of the MSE of the analysed 

predictor was considered. The prediction Mean Squared Error (MSE) of the BLUP 

was given by (cf. Royall, 1976): 

 𝑀𝑆𝐸𝜉(𝜃𝐵𝐿𝑈𝑃) = 𝑔1(𝜹) + 𝑔2(𝜹),  (25) 

where: 

 𝑔1(𝜹) = 𝛾𝑟
𝑇(𝑽𝑟𝑟(𝜹) − 𝑽𝑟𝑠(𝜹)𝑽𝑠𝑠

−1(𝜹)𝑽𝑠𝑟(𝜹))𝛾𝑟  (26) 

and 

𝑔2(𝜹) = 𝛾𝑟
𝑇(𝐗𝑟 − 𝑽𝑟𝑠(𝜹)𝑽𝑠𝑠

−1(𝜹)𝐗𝑠)(𝐗𝑠
𝑇𝑽𝑠𝑠

−1(𝜹)𝐗𝑠)
−1 × 

 × (𝐗𝑟 − 𝑽𝑟𝑠(𝜹)𝑽𝑠𝑠
−1(𝜹)𝐗𝑠)

𝑇𝛾𝑟.  (27) 

The MSE of the EBLUP has the following form (Datta and Lahiri, 2000): 

 𝑀𝑆𝐸𝜉(𝜃𝐸𝐵𝐿𝑈𝑃) = 𝑔1(𝜹) + 𝑔2(𝜹) + 𝑔3(𝜹) + 𝜊(𝐷
−1), (28) 

where 𝑔1(𝜹) and 𝑔2(𝜹) are given by (26) and (27), respectively, and the last element 

is given by: 

 𝑔3(𝜹) = 𝑡𝑟 (
𝜕𝒄𝑇

𝜕𝜹
𝑽𝑠𝑠(𝜹)

𝜕𝒄𝑇

𝜕𝜹
�̆�2(�̂�)), (29) 

where: 𝒄𝑇 = 𝛾𝑟
𝑇𝑽𝑟𝑠(𝜹)𝑽𝑠𝑠

−1(𝜹) and �̆�2(�̂�) is the asymptotic variance-covariance 

matrix of estimator �̂�. 

In the application, three estimators of (28) were considered. The first of them is  

a classic estimator called naive given by (Kackar and Harville 1984, pp. 854-855): 

 𝑀�̂�𝐸𝜉𝑁(�̂�𝐸𝐵𝐿𝑈𝑃) = 𝑔1(�̂�) + 𝑔2(�̂�).  (30) 

where 𝑔1(�̂�) and 𝑔2(�̂�) can be calculated using formulas (26) and (27) where 𝜹 is 

replaced by its estimate. Additionally, for this estimator: 

 𝐸𝜉 (𝑀�̂�𝐸𝜉𝑁 (𝜃𝐸𝐵𝐿𝑈𝑃(�̂�))) − 𝑀𝑆𝐸𝜉 (𝜃𝐸𝐵𝐿𝑈𝑃(�̂�)) = 𝛰(𝐷
−1). (31) 

where 𝑀𝑆𝐸𝜉(. ) is 𝜉-Mean Squared Error of the predictor. 

The next two MSE estimators were based on the parametric bootstrap method. 

These estimators are based on the following bootstrap model (cf. Chatterjee, Lahiri, 

Li, 2008, pp. 1229-1230): 

 𝐘∗ = 𝐗�̂� + 𝐙𝐯∗ + 𝐞∗, (32) 
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where:  

• �̂� is the LS estimator of 𝛃, 

• 𝐯∗~𝐍(𝟎, 𝐆(�̂�)) and 𝐞∗~𝐍(𝟎, 𝐑(�̂�)), 

• �̂� is the REML or ML estimator of 𝛅. 

The parametric bootstrap estimator considered by Gonzales-Manteiga (2008) is 

given by: 

𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡(�̂�𝐸𝐵𝐿𝑈𝑃) = 𝐸∗(𝜃𝐸𝐵𝐿𝑈𝑃(�̂�(�̂�
∗), �̂�∗) − 𝜃∗)

2
= 

 = 𝐵−1∑ (𝜃𝐸𝐵𝐿𝑈𝑃(�̂�(�̂�
∗(𝑏)), �̂�∗(𝑏)) − 𝜃∗(𝑏))

2𝐵
𝑏=1 , (33) 

where: 

• �̂� and �̂� are REML estimators; 

• �̂�∗(𝑏) is given by the same formula as 𝜹 where 𝐘 is replaced by 𝐘∗. 

Additionally, 𝐸∗(. ) is the expected value in the bootstrap distribution and 𝜃∗(𝑏) is 

the value of 𝜃 obtained in the b-th realization of the bootstrap model.  

The last is the estimator proposed by Butar and Lahiri (2003), which has the 

following form: 

𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡−𝐵𝐿(�̂�𝐸𝐵𝐿𝑈𝑃) = 𝑔1(�̂�) + 𝑔2(�̂�) + 

 +𝐸∗ (𝑔1(�̂�
∗) + 𝑔2(�̂�

∗) − (𝑔1(�̂�) + 𝑔2(�̂�))) + (34) 

+𝐸∗(𝜃𝐸𝐵𝐿𝑈𝑃(�̂�(�̂�
∗), �̂�∗) − 𝜃∗)

2
, 

where 𝑔1(�̂�
∗) and 𝑔2(�̂�

∗) are calculated based on (26) and (27) where 𝜹 is replaced 

by �̂�∗. This estimator is asymptotically unbiased in the following sense: 

  𝐸𝜉 (𝑀�̂�𝐸𝜉𝑁 (𝜃𝐸𝐵𝐿𝑈𝑃(�̂�))) − 𝑀𝑆𝐸𝜉 (𝜃𝐸𝐵𝐿𝑈𝑃(�̂�)) = 𝑜(𝐷
−1). (35) 

In the application dataset from Särndal, Swensson and Wretman (1992), 

concerning Swedish municipalities, (𝑁 = 284) was used. The dependent variable in 

the considered model (17) were revenues from 1985 municipal taxation (in millions of 

kronor), and as the auxiliary variable population in 1975 (in thousands of people) was 

used. The division of population into eight domains, according to the region was 

considered. The sample size 𝑛 = 28 (~10% of the population size) was drawn using 

the Brewer sampling scheme. The sample size results from the number of elements in 

the domains. The considered characteristic is the total value in a domain. For 

parametric bootstrap estimators, 𝐵 = 200 was assumed. In Table 1 the results of the 

application are presented – values of the relative Root Mean Squared Error (𝑟𝑅𝑀�̂�𝐸) 

for each of the eight domains. 

For each of the estimators, the value of 𝑟𝑅𝑀�̂�𝐸 is not higher than 22%. It should 

be  noted  that  the  naïve  estimator  has  a  higher  order  of  the  bias  than the estimator 
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Table 1. Results of the application for 8 domains – values of 𝑟𝑅𝑀�̂�𝐸 (in %) 

Domain 1 2 3 4 5 6 7 8 

𝑀�̂�𝐸𝜉𝑁(𝜃𝐸𝐵𝐿𝑈𝑃) 4.61 6.97 5.76 7.16 6.97 8.92 8.48 14.66 

𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡(𝜃𝐸𝐵𝐿𝑈𝑃) 6.09 3.07 3.87 4.12 3.82 8.07 5.37 15.13 

𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡−𝐵𝐿(𝜃𝐸𝐵𝐿𝑈𝑃) 6.77 5.80 10.35 5.64 5.74 10.34 17.22 21.08 

Source: own elaboration. 

considered by Butar and Lahiri (2003). Furthermore, the order of the bias for the 

estimator presented by Gonzales-Manteiga, et. al. (2008) is unknown. Taking into 

account the properties of the considered estimators, it is recommended to use estimator 

𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡−𝐵𝐿.  

6. Simulation study 

In the simulation study the same dataset and the same problem as in application were 

considered. The choice was made from five models: 

• linear regression model with one dependent variable and intercept: 

 𝑌𝑖𝑑 = 𝛽1𝑥𝑖𝑑 + 𝛽0 + 𝑒𝑖𝑑, (36) 

• nested error regression model (5), 

• model with random slope (10), 

• linear mixed model with two uncorrelated random effects (13), 

• linear mixed model with two correlated random effects (17).  

Based on the Akaike Information Criterion (AIC) (see Biecek, 2012, p. 123), the 

last model was chosen – the Linear Mixed Model with two correlated random effects 

specific for domains. To verify the model significance tests of fixed effects and 

variance of random components can be used for fixed effects – a permutation version 

of the conditional t test (Wolfinger, 1993), or a permutation version of the test based 

on the likelihood function (Biecek, 2012); and for random components, among others, 

a permutation version of the test based on the likelihood function (Biecek, 2012). The 

properties of these tests were considered in simulation studies e.g. by Krzciuk and 

Żądło (2014a, b). 

The simulation study can be divided into two parts. In both of them a model-based 

approach was assumed. In the first part data were generated based on the model with 

correlated random effects, in the second – those with uncorrelated random effects. In 

both parts two predictors were considered: 

• EBLUP1 – the proposed predictor based on the model with correlated random 

effects, where model parameters are replaced by their estimates; 



On empirical best linear unbiased predictor under a Linear Mixed Model  27 

• EBLUP2 – the predictor based on the model with uncorrelated random effects, 

where model parameters are replaced by their estimates. 

The number of Monte Carlo iterations is 2000. 

In Table 2 results of the first part of the simulation study are presented – the values 

of relative biases of the considered EBLUPs and the ratios of their MSEs. In this case 

generated data are based on the model with correlated random effects. Each column of 

the table shows the results for one of the eight domains. 

Table 2. Results of the 1st part of simulation study – model-based approach (𝜌 ≠ 0) 

Domain 1 2 3 4 5 6 7 8 

rB(EBLUP1) (in %) –0.01 –0.14 0.38 0.05 –0.13 0.05 –0.15 –0.65 

rB(EBLUP2) (in %) –0.07 –0.27 0.37 0.05 –0.08 0.12 –0.53 –0.12 

MSE(EBLUP1)

MSE(EBLUP2)
 0.61 0.73 0.93 0.80 0.73 0.96 0.72  0.83 

Source: own elaboration. 

In most cases the absolute values of relative bias (rB(.)) for the proposed EBLUP 

were lower or quite similar to EBLUP2. The absolute values of the relative bias for both 

of the predictors were not higher than 1%. The increase of accuracy of the proposed 

EBLUP compared to EBLUP2, due to the correlation between random effects was 

between 4% and 39%. 

Table 3 presents the results of the second part of the study, where data were 

generated based on the model with uncorrelated random effects.  

Table 3. Results of the 2nd part of the simulation study – model-based approach (ρ = 0) 

Domain 1 2 3 4 5 6 7 8 

rB(EBLUP1) (in %) 0.67 0.29 –0.57 –0.58 0.09 –1.22 0.39 0.74 

rB(EBLUP2) (in %) –0.67 0.39 –0.52 –0.61 0.37 –1.14 –0.24 –1.01 

MSE(EBLUP1)

MSE(EBLUP2)
 0.79 0.83 1.05 0.99 1.20 1.00 0.98 0.96 

Source: own elaboration. 

In this part of the analyses rB(.) for EBLUP for models with correlation are quite 

similar to EBLUP2. The loss of accuracy resulting from the model misspecification for 

the proposed EBLUP was not higher than 5%, except for only one case – the fifth 

domain. 
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7. Conclusion 

In the article, the EBLUP for the linear mixed model with two correlated random 

effects was proposed. In the application, the problem of the estimation of the MSE of 

the analysed predictor was considered. In the analyses, the classic naive estimator and 

two estimators based on parametric bootstrap method were taken into account. The 

obtained results suggest using estimator 𝑀�̂�𝐸𝜉𝑏𝑜𝑜𝑡−𝐵𝐿, but this problem requires 

further research. 

The main aim of the simulation study was a comparison of the properties of the 

proposed predictor and EBLUP based on the model with uncorrelated random effects. 

In most cases, for the considered dataset the absolute values of the relative bias for the 

proposed EBLUP were lower or quite similar to EBLUP based on the model with 

uncorrelated random effects. The increase of accuracy for the proposed EBLUP due 

to correlation between random effects, in most cases was higher than 10%. The loss of 

accuracy resulting from model misspecification was not higher than 5%, except for 

only one domain. Even if the lack of the correlation between random effects is 

assumed, the EBLUP under the model, where the correlation is taken into account, has 

good properties. 

This paper was presented at the conference MSA 2019 which financed its 

publication. The organization of the international conference “Multivariate Statistical 

Analysis 2019” (MSA 2019) was supported from resources for the popularization of 

scientific activities from the Minister of Science and Higher Education in the 

framework of agreement No 712/P-DUN/202019. 
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O EMPIRYCZNYM NAJLEPSZYM LINIOWYM NIEOBCIĄŻONYM 

PREDYKTORZE DLA PEWNEGO MODELU MIESZANEGO 

Streszczenie: Zagadnieniem poruszanym w artykule jest problem predykcji w przypadku pewnego modelu 

należącego do klasy liniowych modeli mieszanych. W opracowaniu została przedstawiona propozycja 

empirycznego najlepszego liniowego nieobciążonego predyktora dla liniowego modelu mieszanego  

z dwoma skorelowanymi efektami losowymi. Głównym celem opracowania jest symulacyjne zbadanie 

wpływu występowania zależności między efektami losowymi na własności rozważanego predyktora.  

W artykule podjęto również problem estymacji błędu średniokwadratowego zaproponowanego predyktora. 

Badanie symulacyjne oraz przykład przygotowano z użyciem programu R.  

Słowa kluczowe: empiryczny najlepszy liniowy nieobciążony predyktor, statystyka małych obszarów, 

badanie symulacyjne. 

Quote as: Krzciuk, M. K. (2020). On empirical best linear unbiased predictor under A linear mixed 

model with correlated random effects. Econometrics. Ekonometria. Advances in Applied 

Data Analysis, 24(2). 
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