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Abstract: This paper presents a proposition to utilize flexible neural network architecture called Deep 
Hybrid Collaborative Filtering with Content (DHCF) as a product recommendation engine. Its main 
goal is to provide better shopping suggestions for customers on the e-commerce platform. The system 
was tested on 2018 Amazon Reviews Dataset, using repeated cross validation and compared with 
other approaches: collaborative filtering (CF) and deep collaborative filtering (DCF) in terms of mean 
squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). DCF 
and DHCF were proved to be significantly better than the CF. DHCF proved to be better than DCF 
in terms of MAE and MAPE, it also scored the best on separate test data. The significance of the 
differences was checked by means of a Friedman test, followed by post-hoc comparisons to control 
p-value. The experiment shows that DHCF can outperform other approaches considered in the study, 
with more robust scores.
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1. Introduction 

As the international digital market expanded in the late 20th century, targeted 
marketing and proper product placement became the most important tools for global 
companies willing to increase their customer base (Brynjolfsson and McAfee, 2014). 
The number of products offered by e-commerce platforms such as Amazon, eBay 
and Allegro, is so huge that intelligent systems suggesting next shopping items had 
to be adopted quickly in order to mitigate customer information-overflow (Jones, 
2013).

The key challenge in shopping items recommendation is a proper modelling of 
users’ preferences, which are not explicitly available to the system. Instead, they 
are visible only indirectly via ratings or reviews (Sarwar, Karypis, Konstan, and 
Reidl, 2001), which are often biased and not objective (De Myttenaere, Le Grand, 
Golden, Rossi, 2014). The other challenge is the so-called ‘cold start problem’, 
where a recommendation system cannot operate if there is no previous history for an 
item or user – e.g. after registration or adding new goods to the stock (Lam, Vu, Le, 
and Duong, 2008).

Over the years, several algorithms and approaches have been developed to help 
e-commerce platforms provide better personalized shopping recommendations. 
As technology and processing power evolved, new ideas for solving the problem 
emerged – ranging from matrix decomposition, through collaborative filtering, to 
neural networks. This paper presents a proposal to utilize flexible neural network 
architectures stacked on top of classic methods.

This study’s main research question was: “can a properly tuned neural network 
trained on both raw customer ratings data and items characteristics achieve better 
accuracy than a classic collaborative filtering approach?” The hypothesis was that 
a hybrid neural network would perform better than a simple deep learning approach, 
and both of them will outperform collaborative filtering in terms of the Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 
Error (MAPE) metrics.

This paper is organized as follows. Section 2 describes the existing approaches 
and previous research. Section 3 presents algorithms in the study and the experimental 
framework used to evaluate the quality of recommendations. Section 4 contains 
a discussion of the results and attempts to provide its more detailed interpretation. 
It also introduces possible method improvements. Finally, Section 5 presents the 
conclusions.

2. Previous work

Lately, machine learning has aroused great interest in the scientific community, 
however, recommendation engines as a knowledge-discovery technique have been 
analysed since the Web started to gain in popularity in the early 1990s (Schafer, 
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Frankowski, Herlocker, and Sen, 2007). As improvements in artificial intelligence 
had not yet been made then, researchers tried to improve filtering systems with the 
use of human knowledge in the loop. Goldberg, Tapestry et al. (Goldberg, Nichols, 
Oki, and Terry, 1992) created and described a company internal mailing system that 
helped employees collaborate in order to select relevant and interesting documents. 
This was, however, implemented in a small group of people who knew one another 
– GroupLens (Resnick, Iacovou, Suchak, Bergstrom, and Riedl, 1994) tried to create 
a collaborative filtering system for selecting news in a huge stream of available 
articles. Another attempt to create an automated collaborative filtering system, in 
the music domain, was RINGO (Shardanand and Maes, 1995) – a web-accessible 
application that computed correlations between pairs of users and used them to 
provide recommendations. 

An approach that showed recommendation engines from a slightly different 
angle focused on measuring the correlation between items rather than users, the 
recommendations were based on weighted sum and regression models (Sarwar et 
al., 2001). This was an answer to the challenging issue related to recommended 
systems, namely the ability to scale to large datasets whilst producing high-level 
recommendations.

Since there have been a number of advances in deep learning research, neural-net 
autoencoders were successfully tested against classic matrix factorization and simple 
neural networks (Sedhain, Menon, Sanner, and Xie, 2015) – their AutoRec showed 
representational and computational advantages over the aforementioned methods. 
This promising approach was continued in the work of (Strub, Gaudel, and Mary, 
2016), where a hybrid approach is presented, the custom loss function was used to 
tackle the very common problem of missing data, and side information integration 
handled typical challenge with recommenders, i.e. the cold start. This approach was 
elaborated by Li and She (Li and She, 2017) with the creation of a collaborative 
variational autoencoder that is able to take multimedia data such as movie posters, 
as side information. Another deep-learning-based approach to collaborative filtering 
involves a special neural network architecture aiming at modelling the latent features 
of users and items (X. He et al., 2017). An extension to all neural-based ways is 
a hybrid model that integrates user and item data with the use of Stacked Denoising 
Auto-Encoders (Li and She, 2017).

Previous studies (X. He et al., 2017; Li and She, 2017; Sedhain et al., 2015; Strub, 
Gaudel, and Mary, 2016) show that recommendation engines improved significantly 
owing to the application of deep learning models. They helped to achieve better 
results as well as to incorporate side information among user ratings. 

3. Methods

This section presents the algorithms and models used further in the study, as well as 
the overall training setup.
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3.1. Collaborative Filtering (CF)

The classic collaborative filtering model is based on sparse ratings matrix 
𝑅𝑅(𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ×𝑛𝑛 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  with dimensionality equal to the number of users x the 
number of products. Each matrix entry corresponds to the rating (usually a positive 
integer) given to a product by a user (Jones, 2013).

Given a similarity metric between two arbitrary vectors (Sarwar et al., 2001):

 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠, 𝑗𝑗) = cos(𝑖𝑖, 𝑗𝑗) = 𝑖𝑖 ⋅ 𝑗𝑗
‖𝑖𝑖‖2 ∗ ‖𝑗𝑗‖2   (1)

where: 𝑖𝑖, 𝑗𝑗  corresponds to two arbitrary vectors, representing customers or products.

the system aims at finding entries similar to a given element (user or item of interest) 
in matrix R to make recommendations. Once the neighbouring vectors are found, the 
weighted sum is computed in order to obtain a predicted rating (Sarwar et al., 2001):

 𝑃𝑃𝑢𝑢,𝑖𝑖 =
∑ 𝑠𝑠(𝑖𝑖,𝑁𝑁) ∗ 𝑅𝑅𝑢𝑢,𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠,   𝑁𝑁 
∑ (|𝑠𝑠(𝑖𝑖,𝑁𝑁)|)𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠,   𝑁𝑁 

  (2)

where: i corresponds to a new item of interest, u – current user of interest, s(i, N) – 
similarity score between i and similar item N, Ru,N – rating given by a user 
u to a similar item N.

The algorithm presented above can be used with various modifications, amongst 
which the matrix factorization approach has become the mainstream and the most 
popular one (X. He et al., 2018; Rendle, Freudenthaler, Gantner, and Schmidt- 
-Thieme, 2012; Zhang et al., 2016).

Despite its popularity and simplicity, the CF model has serious limitations. 
Probably the most important one is the use of only a simple matrix operation (such 
as dot products) (X. He et al., 2018) or the lack of the possibility to include external 
product/user characteristics (X. He et al., 2017; Khattar, Kumar, Gupta, and Varma, 
2018).

3.2. Deep Collaborative Filtering (DCF)

Deep collaborative filtering or neural collaborative filtering is a wide family of models 
using deep neural networks to extend the vector similarity or matrix factorization 
results described in the previous section (X. He et al., 2017; Khattar et al., 2018). 
Matrix factorization can be interpreted as a special case of a neural-network 
framework (X. He et al., 2017). Two matrices, the result of classic collaborative 
filtering decomposition, are followed by fully connected, dense layers, ending 
with a single output-neuron. In general, such a model can be described by equation  
(X. He et al., 2017):
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 𝑦𝑦𝑢𝑢�̂�𝑢 = 𝑓𝑓(𝑃𝑃𝑇𝑇𝑉𝑉𝑢𝑢𝑈𝑈,𝑄𝑄𝑇𝑇𝑣𝑣𝑖𝑖𝑙𝑙|𝑃𝑃,𝑄𝑄, 𝜃𝜃𝑓𝑓) , (3)

where: P, Q are latent factor matrices for users and items, θf indicated model 
parameters of the interaction function f. 

The architecture of the model which scored the best results is presented in the 
Figure 1. 

Fig. 1. Deep collaborative filtering model architecture

Source: own work.

Number of ‘branches’ is equal to two, as this neural network replicates the 
collaborative filtering approach, based only on customer-product relationships.
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3.3. Deep Hybrid Collaborative Filtering (DHCF)

The last model in the study was proposed by the authors, hybrid deep collaborative 
filtering model with additional content-related features (DHCF), describing the 
properties of the products. It takes three inputs:

1. Customer identifier.
2. Product identifier.
3. Vector of numerically encoded product features.
Two matrices, the result of classic collaborative filtering decomposition, are 

followed by fully connected, dense layers. The same set of operations takes place for 
product content features – the matrix decomposition result is passed to a dense layer. 
Then, all three branches are concatenated and passed (now as a single matrix) to the 
next dense layer, ending with a single prediction unit. The architecture of the model 
which scored the best results is presented in the Figure 2. 

Fig. 2. Deep hybrid collaborative filtering with content model architecture

Source: own work.

The number of branches is not limited and should be adjusted according to the 
source data (e.g. number of relevant attributes which describe the product).

3.4. Dataset

The performance of the aforementioned algorithms was evaluated using the real-
world dataset, containing customer reviews: “Amazon 2018 Reviews Dataset” 
(Ni, Li, and McAuley, 2020), which is an updated version of the previous edition  
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of ”Amazon Reviews Dataset” (R. He and McAuley, 2016; McAuley, Targett, Shi, 
and Van Den Hengel, 2015). It was selected as a representative example due to its 
specific properties, namely: 

1. Amazon is a global store, with a large international userbase, and therefore 
ratings are not given by a small group of geographically local customers.

2. Ratings are highly biased (see an analysis below), reflecting a general problem 
in recommendation systems (Adomavicius, Bockstedt, Shawn, and Zhang, 2014; 
Krishnan, Patel, Franklin, and Goldberg, 2014; Shani and Gunawardana, 2011).

The dataset consists of 5269 customer-review pairs coming from the products 
category: “All beauty” (fashion & cosmetics), with 991 customers and 85 unique 
products. The dataset ratings were expressed on a 5-star scale, with a single star 
being the lowest rating, and 5 stars being the highest. 

The Amazon 2018 Reviews Dataset is representative in terms of a customer 
bias due to high rating skewness, which makes the task difficult especially for any 
prediction algorithms – more than 90% of ratings were maximum (5).

Apart from the customer identifier, product identifier and the rating, the dataset 
consists of the following additional, product-related information, all descriptive and 
categorical:

1. Size – 289 unique values.
2. Colour – 77 unique values.
3. Style name – 4 unique values.
4. Scent name – 9 unique values, in case of perfume, attribute describes the 

fragrance name.
5. Flavour – 4 unique values, describes special features of the product.
6. Design – 21 unique values, describes general design category of the product.
This additional information can be utilized by the proposed hybrid content-based 

neural network recommendation engine (DHCF) in order to make a better match 
between the customer and the product.

3.5. Data preprocessing and experimental setup

Each categorical attribute was encoded as a consecutive number so that it can be 
used by a neural embedding layer later during the training phase. 
The source data was prepared for the experiment with the following steps:

1. Test set – 10% of the whole dataset was extracted as a test set, on which a final 
algorithms evaluation was performed. The ratings for this set were selected in such 
a way that at least three other ratings from the same customer are present in the train 
set, so the algorithm will be able to learn the regularities and latent factors which 
affect the customer’s choices. The test set consists of 527 customer-product-rating 
triplets.

2. Cross validation set – the remaining 4742 triplets were used to train 
algorithms using the ten times repeated ten-fold cross-validation method (Moore 
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and Lee, 1994; Schaffer, 1993). During each cross-validation iteration, the cross-
-validation train subset consisted of 4267 customer-product-rating triplets and the 
validation subset consisted of 475 customer-product-rating triplets.

During each cross-validation iteration, three prediction performance metrics were 
collected: mean squared error of prediction (MSE), mean absolute error of prediction 
(MAE) and mean absolute percentage error (MAPE). All metrics were expressed 
using the ‘stars’ scale. Mean squared error was used as the main monitoring metric 
(due to its useful mathematical properties, helpful in the backpropagation procedure 
(Goodfellow, Bengio, and Courville, 2016, Chapter 8), as it penalizes the biggest 
errors during training. MAE gives intuition on how big (on average) the model errors 
were (expressed in the same units as ratings), while MAPE shows the magnitude  
of the error relative to the original rating.

3.6. Prediction models

Three classes of modes were compared during this study, corresponding to the 
theoretical approaches described before. 

The first one was a collaborative filtering (CF) model with internal matrix 
factorization. The number of latent factors was set to 32, based on model tuning 
results. For every cross-validation fold, it was trained on ten epochs using the Adam 
optimizer with learning rate set to lr = 0.01.

The number of latent factors was set at 32 for the second model (deep collaborative 
filtering DCF). The next two dense layers were added with 16 and 8 units accordingly, 
and their activation function was set to tanh. In order to avoid overfitting and to 
reduce residuals magnitude, dropout with rate = 0.2 was added after each layer. For 
every cross-validation fold, the model was trained on ten epochs, using the Adam 
optimizer with learning rate lr = 0.01.

Third model was deep hybrid collaborative (DHCF). The number of latent 
factors was set at 24 for customers and 16 for products. Out of all product attributes, 
colour (with latent factors set at 16), style name (with latent factors set at 4) and scent 
(with latent factors set at 8) proved to be informative. For customers and products, 
dense layers of 8 units were used, while for product features – 16 units. After 
concatenation, a 16-unit followed by a single unit dense layers were added. In order 
to avoid overfitting and to reduce residuals magnitude, dropout with rate = 0.2 was 
added after each dense layer, as well as weights l2 regularization. For every cross- 
-validation fold, the model was trained on ten epochs, using the Adam optimizer with 
learning rate lr = 0.01.

3.7. Results

The table below summarizes the training metrics for three model architectures, after 
a repeated ten-fold cross validation procedure. The values in each cell represent the 
mean value of the metric, while the values in brackets represent standard deviation.
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Table 1. Training data metrics

Metric [stars]/Model CF DCF DHCF
MSE 0.870 (0.4) 0.121 (0.026) 0.095 (0.036)
MAE 0.347 (0.07) 0.108 (0.016) 0.086 (0.013)
MAPE 0.082 (0.01) 0.037 (0.007) 0.027 (0.006)

Bold text shows the lowest value in a row – for metric values (no bracket) as well as standard 
deviation.

Source: own work.

A thorough analysis indicates that all three metric values are the smallest for the 
DHCF model. Of three approaches considered in the study, the classic collaborative 
filtering model scored the worst results every time.

Each metric comparison can also be visualized using a boxplot, as presented 
below and such a visualization additionally shows a spread of the result metrics.

In order to assess the statistical significance of the differences, a non-parametric 
test was performed. Considering the fact that for repeated k-fold cross-validation 
samples are not independent (instead: selected on purpose to be in training or 
test subset without duplication) and measures are repeated k-times for multiple 
classifiers, the Friedman test was selected (Bouckaert and Frank, 2004; Demšar, 
2006; García, Fernández, Luengo, and Herrera, 2009; Trawinski, Smetek, Telec, and 
Lasota, 2012). The test was conducted on a confidence level α = 0,05.

Fig. 3. Comparison of train error metrics

Source: own work.

Having confirmed that there is a statistically significant difference between 
the algorithms, post-hoc tests were performed to assess the significance of specific 
pairwise differences. For that purpose, the Conover post-hoc test was used (Conover 
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and Iman, 1979; Pereira, Afonso, and Medeiros, 2015) with the Bonferroni-Holm 
p-value correction to control the confidence level α at 0.05 (Armstrong, 2014; Holm, 
1979). The results are summarized in the tables below:

Table 2. Friedman test results

Quality metric/Test Friedman statistic p-value Significant at confidence 
level α = 0.05?

Train MSE ≈18.200 ≈ 0.0001 true
train MAE 20 ≈4.53 e–5 true
train MAPE 20  ≈4.53 e–5 true

Source: own work.

All differences were significant, and hence detailed post-hoc tests followed to 
check each pair of models and metrics.

Table 3. Post-hoc test results

Model 1 Model 2 MSE p-val MAE p-val MAPE p-val
DHCF DCF 0.055 0.0023 0.002
DHCF CF  <0.001 <0.001 <0.001
DCF CF  <0.001 <0.001 <0.001

Bold font indicates statistical significance.

Source: own work.

Two of the three metrics indicate that the DHCF model performs better on test 
data, compared to Deep Collaborative Filtering. Both DHCF and Deep Collaborative 
Filtering achieve significantly better results than the classic Collaborative Filtering 
approach.

The final comparison was conducted on a test dataset, separated from training 
data and not available to any of the algorithms in the study. The table below 
summarizes the results. The DHCF model scored the best results for all three metrics, 
although standard deviation of its percentage error residuals was higher than for the 
collaborative filtering. 

Table 4. Test data metrics comparison

Model/Metric [stars] Test MSE Test MAE Test MAPE
DHCF 0.1698 (0.76) 0.1691 (0.375) 0.065 (0.24)
DCF 0.5392 (2.29) 0.3592 (0.63) 0.139 (0.49)
CF 22.8573 (4.9) 4.7270 (0.71) 0.986 (0.02)

Bold font indicates the lowest value in the category. Numbers in brackets indicate standard deviation 
of residuals.

Source: own work.
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Statistical significance for all the metrics was tested in a similar way as for the 
test data, i.e. using the Friedman test, followed by post-hoc pairwise comparisons, 
with significance level controlled using Holm’s method. The results for all the pairs 
were proven to be statistically significant with p-values below 1e – 10. 

4. Discussion

The Deep Hybrid Collaborative Filtering with the Content (DHCF) model was 
proven to achieve the best results on the test data and for two of the three metrics 
in the test data, therefore the main research hypothesis was partially confirmed. No 
statistically significant difference was found for the Mean Squared Error (MSE) 
metric between the Deep Collaborative Filtering (DCF) model and DHCF, yet both 
performed statistically better than vanilla Collaborative Filtering (CF). In most of the 
comparisons, DHCF showed relatively low variance of residuals than other models.

These results are the consequence of at least two factors. Firstly, deep learning 
architectures stacked on top of vanilla collaborative filtering are better in terms 
of extracting and processing latent features, as they are considered to be universal 
approximators (Hornik, Stinchcombe, White, et al., 1989; Nielsen, 2015, Chapter 
4) with better generalization abilities. Secondly, the DHCF model accepts external 
features such as content description, which provides additional information useful 
for matching customers with products. This capability makes it more flexible and 
extensible, compared to other approaches. The lack of statistical significance when 
comparing DCF and DHCF using the MSE metric can be attributed to the fact that two 
models belong to the same family of algorithms, with the latter being an extension 
of the former, and MSE over-emphasizes large errors (Qi, Du, Siniscalchi, Ma, and 
Lee, 2020). At the same time, the other metrics (MAE and MAPE) confirmed the 
statistical significance of differences in accuracy between DCF and DHCF.

One of the limitations of the presented research is that it was conducted using 
a single dataset. Although representative, it was recorded in a specific market 
environment and conditions. As a next step, a series of experiments could be 
performed using different datasets as inputs, varying in size, product, and customer 
characteristics. Any such experiment will require DHCF tuning and new architecture 
design, which might be an opportunity to verify the algorithm’s ability to generalize. 
Alternative datasets might contain a different rating bias (the general tendency 
of customers towards positive or negative opinions), making the whole exercise 
harder for a model.

An important factor that makes the CF and classic approaches still popular 
is the possibility to interpret the model and its representation with clarity. A side 
effect of matrix factorization can be interpreted directly in terms of ’latent factors’ 
– unobservable (hidden) characteristics shared between customers and products  
(X. He et al., 2018; Rendle, Freudenthaler, Gantner, and Schmidt-Thieme, 2012; 
Zhang et al., 2016). While the DCF and DHCF methods attempt to replicate such 
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behaviour (by using ‘embedding’ neural network layer), higher-order interactions 
in subsequent layers make it much harder to extract such connections. A number of 
approaches, mostly based on simpler meta-models, have been designed to address 
this problem, e.g. SHAP (Lundberg and Lee, 2017) or LIME (Ribeiro, Singh, and 
Guestrin, 2016), but they are based on indirect post-hoc reasoning.

One should be aware that the DHCF architecture presented above is not the  
only possible one, and, for other problems (datasets), different configurations 
of customer-product-content layers might be required. The appropriate one can be 
found through experimentation and careful model selection, as there is no single 
configuration that could guarantee satisfactory results.

5. Conclusion

In this paper, three recommendation engine performance comparisons were 
conducted on real customer reviews datasets – Collaborative Filtering, Deep 
Collaborative Filtering, and Deep Hybrid Collaborative Filtering with Content 
(DHCF). Both models – Deep Collaborative Filtering and DHCF – should be seen 
not as a replacement or an alternative for vanilla Collaborative Filtering, but rather 
as its extensions. They are built on top of traditional architecture, providing new 
features and predictive abilities. Out of these two the DHCF model proved to be 
more flexible and extensible, which in consequence leads to statistically better 
generalization results. 

Further studies could focus on testing the described model architectures on other 
customer reviews datasets belonging to different industries and product categories. 
Additionally, different content features might be used for that purpose, including 
natural language processing (such as parsing product descriptions or instructions). 
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WYKORZYSTANIE HYBRYDOWYCH GŁĘBOKICH SIECI 
NEURONOWYCH JAKO SYSTEMÓW REKOMENDACYJNYCH: 
STUDIUM PRZYPADKU

Streszczenie: W artykule zbadano innowacyjną architekturę sieci neuronowych zwaną Głębokim Hy-
brydowym Systemem Filtracji Kolaboratywnej (DHCF), mającą posłużyć jako system rekomendacji 
konsumenckich. Jego zadaniem jest sugerowanie produktów klientom platform e-commerce. System 
został przetestowany na zbiorze danych 2018 Amazon Reviews, z wykorzystaniem powtórzonej wali-
dacji krzyżowej, i porównany z dwoma innymi podejściami: filtracją kolaboratywną (CF) oraz filtra-
cją kolaboratywną z siecią neuronową (DCF). Do porównania wykorzystano metryki błędu średnio-
kwadratowego (MSE), średniego błędu bezwzględnego (MAE) oraz średniego procentowego błędu 
bezwzględnego (MAPE). DCF i DHCF uzyskały wyniki istotnie lepsze niż CF, a dodatkowo DHCF 
uzyskał lepsze wyniki niż DCF pod względem MAE i MAPE. Istotność różnic sprawdzano testem 
Friedmana z porównaniami wielokrotnymi i kontrolą poziomu istotności. Eksperyment dowodzi, że 
DHCF uzyskuje lepsze i stabilniejsze wyniki niż pozostałe metody.

Słowa kluczowe: filtracja kolaboratywna, głębokie uczenie, model treści, rekomendacja produktów.
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